In the question in the link is it compulsory that $A+B+C=\pi$ ?
3 Answers
Here in Problem when $x=\cos (a) +i\sin(a),\ y=\cos (b) +i\sin(b),\ z=\cos (c) +i\sin(c),\ x+y+z=0$,
we have proved that $$\sum\cos A=\sum\sin A=0\ \ \ \ (1)$$ $$(1)\implies\sum\cos2A=\sum\sin2A=0\ \ \ \ (2)$$
Now from $(1),\cos A+\cos B=-\cos C$ and $\sin A+\sin B=-\sin C$
Squaring & adding we get, $\cos(A-B)=-\dfrac12\ \ \ \ (3)$
Similarly, $\cos(B-C)=-\dfrac12\ \ \ \ (4),\cos(C-A)=-\dfrac12\ \ \ \ (5)$
$(3)\implies A-B=2m\pi\pm\dfrac{2\pi}3$ where $m$ is any integer
$(4)\implies B-C=2n\pi\pm\dfrac{2\pi}3$ where $n$ is any integer
If we take the opposite signs, $A-C=A-B+B-C=2\pi(m-n)$ $\implies\cos(C-A)=\cos(A-C)=\cos2\pi(m-n)=1$ which contradicts $(5)$
So, either $A-B=2m\pi+\dfrac{2\pi}3,B-C=2n\pi+\dfrac{2\pi}3\ \ \ (6)$
Or $A-B=2m\pi-\dfrac{2\pi}3,B-C=2n\pi-\dfrac{2\pi}3\ \ \ (7)$
Observe that both$(6),(7)$ satisfy $(5)$
So, the angles have to differ by $\dfrac{2\pi}3\pmod{2\pi}$ which is the sufficient condition for $(1)$ which always implies $(2)$
- 279,016
-
Now that's called insight...thank you so much !! – Aug 15 '15 at 04:47
-
@SanchayanDutta, Welcome. Also, we have http://math.stackexchange.com/questions/1382047/trigonometry-problem . Can you prove $$\sum\cos(A-B)=-\dfrac32\implies$$ each equals $$-\dfrac12?$$ – lab bhattacharjee Aug 16 '15 at 03:19
No.
For $A=0,B=2\pi/3,C=4\pi/3$ where $A+B+C=2\pi$, we have $$\sin A+\sin B+\sin C=\cos A+\cos B+\cos C=0$$ and $$\sin 2A+\sin 2B+\sin 2C=\cos 2A+\cos 2B+\cos 2C$$
- 151,597
If $a=e^{iA}=\cos A+\sin A$ etc.
we have $a+b+c=0$
and $a^2+b^2+c^2=0\iff0=a^2+b^2+(-a-b)^2=2(a^2+ab+b^2)$
$\implies a=bw$ where $w$ is a complex cube root of unity
and $c=-a-b=-bw-b=-b(1+w)=bw^2$
Now $w=\dfrac ab=e^{i(A-B)}\implies A-B=2n\pi\pm\dfrac{2\pi}3$
and $w^2=\dfrac cb=e^{i(C-B)}\implies C-B=2m\pi\mp\dfrac{2\pi}3$ where $m,n$ are integers
- 279,016