If $\cos\alpha+\cos\beta+\cos\gamma=\sin\alpha+\sin\beta+\sin\gamma=0$ and $\cos3\alpha=\dfrac34$ then $\cos^8\alpha+\cos^8\beta+\cos^8\gamma=$
- A) $\dfrac3{128}$
- B) $\dfrac{27}{32}$
- C) $\dfrac3{16}$
- D) $\dfrac5{128}$
ATTEMPT $1$: $e^{i\alpha}=\cos\alpha+i\sin\alpha$, $e^{i\beta}=\cos\beta+i\sin\beta$, $e^{i\gamma}=\cos\gamma+i\sin\gamma$
Adding, we get $e^{i\alpha}+e^{i\beta}+e^{i\gamma}=0$
Now, if $a+b+c=0\implies a^3+b^3+c^3=3abc$
Therefore, $e^{i3\alpha}+e^{i3\beta}+e^{i3\gamma}=3e^{i(\alpha+\beta+\gamma)}$
$\implies \cos3\alpha+i\sin3\alpha+\cos3\beta+i\sin3\beta+\cos3\gamma+i\sin3\gamma=3\cos(\alpha+\beta+\gamma)+3i\sin(\alpha+\beta+\gamma)$
Sure, $\cos3\alpha$ is given but what about the rest? Also, we need $\cos^8\alpha$. How to get that? On RHS, can we use the following formula?
$\cos(A+B+C)=\cos A\cos B\cos C-\cos A\sin B \sin C-\cos B\sin C\sin A-\cos C\sin A\sin B$
ATTEMPT $2$: $$\cos3\alpha=\frac34\\4\cos^3\alpha-3\cos\alpha=\frac34\\\cos\alpha(4\cos^2\alpha-3)=\frac34\\4\cos^2\alpha-3=\frac34\sec\alpha$$
Also, $0\le4\cos^2\alpha\le4\implies-3\le4\cos^2\alpha-3\le1\implies-3\le\frac34\sec\alpha\le1\implies-4\le\sec\alpha\le\frac43$
But $\sec\alpha\ge1\implies1\le\sec\alpha\le\frac43$
Does that help?
ATTEMPT $3$: Hit and try. If $\beta=\frac{\pi}2\implies\alpha+\gamma=\pi$
But it doesn't fit sine equation. Have tried with $0,\pi$ etc. Not working.