If $\sin \alpha+\sin \beta+\sin \gamma=0$ and $\cos \alpha+\cos \beta+\cos \gamma=0$
Then find the values of $\sum \sin^2 \alpha$ and $\sum \cos^2 \alpha$.
Try: $$(\sin \alpha+\sin \beta+\sin \gamma)^2=\sum \sin^2 \alpha+2\sum \sin (\alpha+\beta)$$
So $$\sum\sin^2 \alpha = -2\sum \sin (\alpha+\beta)$$
Similarly $$\sum \cos^2 \alpha = -2\sum \cos(\alpha-\beta)$$
From $\sin \alpha+\sin \beta = -\sin \gamma$ and $\cos \alpha+\cos \beta = -\cos \gamma$
Squaring and Adding $$2+2\cos(\alpha-\beta)=1\Rightarrow \cos (\alpha-\beta)=-\frac{1}{2}$$
$$\sum \cos^2 \alpha =3 = \sum \sin^2 \alpha$$
Could someone explain me in geometrical way.
I have seems that
$(\cos \alpha,\sin \alpha)\;\;,(\cos \beta,\sin \beta)\;\;,(\cos \gamma,\sin \gamma)$ must be the vertices of an triangle.
But not understand how to solve further thanks