If $\sin A+\sin B+\sin C=\cos A+\cos B+\cos C=0$, prove that: $\cos 3A+\cos 3B+ \cos 3C=3\cos(A+B+C)$.
My Attempt;
Here,
$$e^{iA}=\cos A+i\sin A$$ $$e^{iB}=\cos B+i\sin B$$ $$e^{iC}=\cos C+i\sin C$$
Then, $$e^{iA}+e^{iB}+e^{iC}=0$$
Now, what should I do further. Please help.