If $$\cos A+\cos B+\cos C=\sin A.+\sin B+\sin C=0$$ then prove that: $$\cos 3A+\cos 3B+\cos 3C=3\cos(A+B+C)$$
My Attempt;
Here, $$\cos A+\cos B+\cos C=0$$ $$\cos A+\cos B=-\cos C$$ squaring on both sides, $$\cos^2A+2\cos A.\cos B+\cos^2B=\cos^2C$$
Again, $$\sin A+\sin B+\sin C=0$$ $$\sin A+\sin B=-\sin C$$ squaring on both sides $$\sin^2A+2\sin A.\sin B+\sin^2B=\sin^2C$$
Now,
$$L.H.S=\cos 3A+\cos 3B+\cos 3B$$ $$=4\cos^3A-3\cos A+4\cos^3B-3\cos B+4\cos^3C-3\cos C$$ $$=4(\cos^3A+\cos^3B+\cos^3C)-3(\cos A+\cos B+\cos C)$$ $$=4(\cos^3A+\cos^3B+\cos^3C)-3\times 0$$ $$=4(\cos^3A+\cos^3B+\cos^3C$$ Now, please help me to continue from.here.
NOTE: PLEASE DO NOT USE COMPLEX NUMBERS IN THE SOLUTION