Hint: Anyway this is a solution with complex numbers. The solution without the complex numbers can be deduced from here, use the formula $e^{ix}=cos(x)+isin(x)$ and compute the real part at it stage of the following method.
$cos(A)+cos(B)+cos(C)=sin(A)+sin(B)+sin(C)=0$ is equivalent to $e^{iA}+e^{iB}+e^{iC}=0$.
$e^{iA}+e^{iB}+e^{iC}=0$ implies $(e^{iA}+e^{iB}+e^{iC})^3=0$.
We use the identity:
$(a+b+c)^3 = a^3+3a^2b+3a^2c+3ab^2+6abc+3ac^2+b^3+3b^2c+3bc^2+c^3$
Thus we have:
$e^{3iA}+ 3e^{2iA}e^{iB}+3e^{2iA}e^{iC}+3e^{iA}e^{2iB}+6e^{i(A+B+C)}+3e^{iA}e^{2iC}+e^{3iB}+3e^{2iB}e^{iC}+3e^{iB}e^{2iC}=0$
$=e^{3iA}+e^{3iB}+e^{3iC}+3e^{iA}e^{iB}(e^{iA}+e^{iB})+3e^{iA}e^{iC}(e^{iA}+e^{iC})+3e^{iB}e^{iC}(e^{iB}+e^{iC})+6e^{i(A+B+C)}=0$
We use here $e^{iA}+e^{iB}+e^{iC}=0$ which implies $e^{iA}e^{iB}(e^{iA}+e^{iB})=-e^{iA}e^{iB}e^{iC}$.
We deduce
$e^{3iA}+e^{3iB}+e^{3iC} -3e^{iA}e^{iB}e^{iC}-3e^{iA}e^{iB}e^{iC}-3e^{iA}e^{iB}e^{iC}+6e^{i(A+B+C)}=0$.
$e^{3iA}+e^{3iB}+e^{3iC} = 3(e^{iA}+e^{iB}+e^{iC})$
thus $cos(3A)+cos(3B)+cos(3C)=3(cos(A)+cos(B)+cos(C))$.