If $z_1,z_2,z_3 \in \mathbb{C}$ and $|z_1|=|z_2|=|z_3|$ and $z_1+z_2+z_3=0$. Prove that $z_1,z_2,z_3$ are points of a isosceles triangle that is on a unit circle with the center in the coordinate beginning.
The answer is given in the following manner:$$z_1=|z_1|e^{i\varphi_1}\\ z_2=|z_2|e^{i\varphi_2} \\ z_3=|z_3|e^{i\varphi_3}\\ |z_1|=|z_2|=|z_3|=|z|$$
It goes on to state that this needs to be true, which I understand why: $$|z_1-z_2|=|z_2-z_3|=|z_3-z_1|=\sqrt{3}|z|$$ and then finding $$|z_1-z_2|=....$$
$$2|z|\left|\sin\left(\frac{\varphi_1-\varphi_2}{2}\right)\right|=2|z|\left|\sin\left(\frac{ \pi }{3}\right)\right|????$$
How can we assume this??
