For proofs inequalities by Tangent Line method.
Let $f:\mathbb{R}\rightarrow\mathbb R$ be differentiable function, $\sum\limits_{k=1}^nx_k=n$ and we need to prove that $\sum\limits_{k=1}^nf(x_k)\geq nf(1)$.
Thus, $$\sum\limits_{k=1}^nf(x_k)-nf(1)=\sum\limits_{k=1}^n\left(f(x_k)-f(1)\right)=\sum\limits_{k=1}^n\left(f(x_k)-f(1)+\lambda(x_k-1)\right),$$ where $f'(1)+\lambda=0$.