Given $a,b,c,d$ such that $a + b + c + d = 4$ show that $$(a^2 + 3)(b^2 + 3)(c^2 + 3)(d^2 + 3) \geq 256$$
What I have tried so far is using CBS:
$(a^2 + 3)(b^2 + 3) \geq (a\sqrt{3} + b\sqrt{3})^2 = 3(a + b)^2$
$(c^2 + 3)(d^2 + 3) \geq 3(c + d)^2$
$(a^2 + b^2)(c^2 + d^2) \geq (ac + bd)^2$
Then, we have:
$(a^2 + 3)(b^2 + 3)(c^2 + 3)(d^2 + 3) \geq 9(a + b)^2(c + d)^2$.
Thus, we have to prove that $9(a + b)^2(c + d)^2 \geq 256$.
Then, I used the following substitution:
$c + d = t$ and $a + b = 4 - t$.
We assume wlog that $a \leq b \leq c \leq d$.
Then, $4 = a + b + c + d \leq 2(c + d) = 2t$. Thus, $t \geq 2$.
Then, what we have to prove is:
$9t^2(4 - t)^2 \geq 256$.
We can rewrite this as:
$(3t(4 - t) - 16)(3t(4 - t) + 16) \geq 0$, or $(3t^2 + 2t + 16)(3t^2 - 12t - 16) \geq 0$,
at which point I got stuck.