Problem 1: Let $x_i \ge 0, \, i=1, 2, \cdots, n$ with $\sum_{i=1}^n x_i = \frac12$. Prove or disprove that $$\sum_{1\le i < j \le n} \frac{x_ix_j}{1-x_i-x_j} \le \frac18.$$
This is related to the following problem:
Problem 2: Let $x_i \ge 0, \, i=1, 2, \cdots, n$ with $\sum_{i=1}^n x_i = \frac12$. Prove that $$\sum_{1\le i<j\le n}\frac{x_ix_j}{(1-x_i)(1-x_j)}\le \frac{n(n-1)}{2(2n-1)^2}.$$
Problem 2 is in "Problems From the Book", 2008, Ch. 2, which was proposed by Vasile Cartoaje.
See: Prove that $\sum_{1\le i<j\le n}\frac{x_ix_j}{(1-x_i)(1-x_j)} \le \frac{n(n-1)}{2(2n-1)^2}$
Background:
I proposed Problem 1 when I tried to find my 2nd proof for Problem 2.
It is not difficult to prove that $$\frac{1}{(2n-1)^4} + \frac{16n^2(n-1)^2}{(2n-1)^4}\cdot \frac{x_ix_j}{1-x_i-x_j} \ge \frac{x_ix_j}{(1-x_i)(1-x_j)}.$$ (Hint: Use $\frac{x_ix_j}{(1-x_i)(1-x_j)}= 1 - \frac{1}{1 + x_ix_j/(1-x_i-x_j)}$ and $\frac{1}{1+u} \ge \frac{1}{1+v} - \frac{1}{(1+v)^2}(u-v)$ for $u = x_ix_j/(1-x_i-x_j)$ and $v=\frac{1}{4n(n-1)}$. Or simply $\mathrm{LHS} - \mathrm{RHS} = \frac{(4x_ix_jn^2 - 4x_ix_j n + x_i + x_j - 1)^2}{(2n-1)^4(1-x_i-x_j)(1-x_i)(1-x_j)}\ge 0$.)
To prove Problem 2, it suffices to prove that $$\frac{1}{(2n-1)^4}\cdot \frac{n(n-1)}{2} + \frac{16n^2(n-1)^2}{(2n-1)^4}\sum_{1\le i < j \le n} \frac{x_ix_j}{1-x_i-x_j} \le \frac{n(n-1)}{2(2n-1)^2} $$ or $$\sum_{1\le i < j \le n} \frac{x_ix_j}{1-x_i-x_j} \le \frac18.$$
For $n=2, 3, 4$, the inequality is true.
For $n=5, 6$, numerical evidence supports the statement.
Any comments and solutions are welcome and appreciated.
$$h\left(x,y\right)+h\left(y,z\right)+h\left(z,x\right)\leq 0.25\left(f\left(2\sqrt{xy}\right)+f\left(2\sqrt{yz}\right)+f\left(2\sqrt{zx}\right)\right)+0.75\frac{1}{8}\leq 0.125$$
Where :
$$h\left(x,y\right)=\frac{yx}{1-x-y},f\left(x\right)=\frac{\frac{x^{2}}{4}}{1-x}$$
And obviously $x+y+z=0.5$ ,$x,y,z>0$
I think it works also with the general case with the constraint above in the question .
– Barackouda Jun 03 '22 at 08:40$$\left(x+y\right)^{2}\left(1-\left(x+y\right)\right)\geq \frac{xy}{1-x-y}$$
then as the function $f(x)=x^2(1-x)$ is convex on $[0,1/3]$ we use Jensen-Mercer inequality to get :
$$0.125\ge\frac{n\left(n-1\right)}{2}\left(f\left(x\right)+f\left(y\right)-f\left(x+y-\frac{1}{3}\right)\right)$$
Wich is a constraint .
Mercer, A.McD.. "A variant of Jensen's inequality.." JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only] 4.4 (2003): Paper No. 73, 2 p.-Paper No. 73, 2 p.
– Barackouda Jun 04 '22 at 09:18