If $ a,b,c $ are three positive real numbers and $ abc=1 $ then prove that $a^2+b^2+c^2 \le a^3 +b^3 +c^3 $
I got $a^2+b^2+c^2\ge 3$ which can be proved $ a^2 +b^2+c^2\ge a+b+c $. From here how can I proceed to the results? Please help me to proceed. Thanks in advance.