This proof is probably the most elementary one that I can come up with. (However, I have never been trained in olympiad-style inequalities, so it is quite likely that a much easier solution exists.)
We first prepare two lemmas:
Lemma 1. If $0 < x \leq y \leq 1$, then $x+\frac{1}{x} \geq y+\frac{1}{y}$.
Proof. This immediately follows from $ \bigl( x+\frac{1}{x} \bigr) - \bigl( y+\frac{1}{y} \bigr) = \frac{(y-x)(1-xy)}{xy} $.
Lemma 2. Let $a_1, a_2, b_1, b_2 \in (0, 1]$ satifsy $a_1 + a_2 = b_1 + b_2$ and $|b_1 - b_2| \leq |a_1 - a_2|$. Then
$$ \left(a_1 + \tfrac{1}{a_1}\right)\left(a_2 + \tfrac{1}{a_2}\right) \geq \left(b_1 + \tfrac{1}{b_1}\right)\left(b_2 + \tfrac{1}{b_2}\right).$$
Proof. By writing $ a_1 a_2
= \bigl(\frac{a_1+a_2}{2}\bigr)^2 - \bigl(\frac{a_2-a_1}{2}\bigr)^2 $ and $ b_1 b_2
= \bigl(\frac{b_1+b_2}{2}\bigr)^2 - \bigl(\frac{b_2-b_1}{2}\bigr)^2 $, we get $a_1 a_2 \leq b_1 b_2$. Then by Lemma 1,
\begin{align*}
\left(a_1 + \tfrac{1}{a_1}\right)\left(a_2 + \tfrac{1}{a_2}\right)
&= \left( a_1 a_2 + \tfrac{1}{a_1 a_2} \right) + \tfrac{(a_1 + a_2)^2}{a_1 a_2} - 2 \\
&\geq \left( b_1 b_2 + \tfrac{1}{b_1 b_2} \right) + \tfrac{(b_1 + b_2)^2}{b_1 b_2} - 2 \\
&= \left(b_1 + \tfrac{1}{b_1}\right)\left(b_2 + \tfrac{1}{b_2}\right).
\end{align*}
Now returning to the original problem, let $n\geq 2$ and $x_1, \dots, x_n > 0$ be such that $\sum_{k=1}^{n} x_k = 1$. This forces that $x_k \leq 1$ for all $k$.
Suppose that not all of $x_i$'s are equal to $\frac{1}{n}$. Then there must exist $i$ and $j$ such that $x_i < \frac{1}{n} < x_j$. Then we can find $x^*_i$ and $x^*_j$ such that
$$ x_i + x_j = x^*_i + x^*_j, \qquad |x^*_i - x^*_j| \leq |x_i - x_j|, \qquad \text{and}\qquad \tfrac{1}{n} \in \{ x^*_i, x^*_j \}. $$
So, replacing $x_i$ and $x_j$ by $x^*_i$ and $x^*_j$ respectively, we can lower both the number of terms different from $\frac{1}{n}$ and the value of the products $\prod_{k=1}^{n}(x_k + \frac{1}{x_k})$. Therefore, by repeating this procedure at most $n$ times, we obtain the desired lower bound.