Most Popular

1500 questions
167
votes
26 answers

Why does the series $\sum_{n=1}^\infty\frac1n$ not converge?

Can someone give a simple explanation as to why the harmonic series $$\sum_{n=1}^\infty\frac1n=\frac 1 1 + \frac 12 + \frac 13 + \cdots $$ doesn't converge, on the other hand it grows very slowly? I'd prefer an easily comprehensible explanation…
bryn
  • 10,045
167
votes
3 answers

Why is the eigenvector of a covariance matrix equal to a principal component?

If I have a covariance matrix for a data set and I multiply it times one of it's eigenvectors. Let's say the eigenvector with the highest eigenvalue. The result is the eigenvector or a scaled version of the eigenvector. What does this really…
167
votes
8 answers

What's the point in being a "skeptical" learner

I have a big problem: When I read any mathematical text I'm very skeptical. I feel the need to check every detail of proofs and I ask myself very dumb questions like the following: "is the map well defined?", "is the definition independent from the…
Dubious
  • 14,048
167
votes
22 answers

Examples of mathematical discoveries which were kept as a secret

There could be several personal, social, philosophical and even political reasons to keep a mathematical discovery as a secret. For example it is completely expected that if some mathematician find a proof of $P=NP$, he is not allowed by the…
user180918
166
votes
1 answer

What is the Picard group of $z^3=y(y^2-x^2)(x-1)$?

I'm actually doing much more with this affine surface than just looking for the Picard group. I have already proved many things about this surface, and have many more things to look at it, but the Picard group continues to elude me. One of the…
166
votes
20 answers

How to distinguish between walking on a sphere and walking on a torus?

Imagine that you're a flatlander walking in your world. How could you be able to distinguish between your world being a sphere versus a torus? I can't see the difference from this point of view. If you are interested, this question arose while I was…
166
votes
33 answers

What are the most overpowered theorems in mathematics?

What are the most overpowered theorems in mathematics? By "overpowered," I mean theorems that allow disproportionately strong conclusions to be drawn from minimal / relatively simple assumptions. I'm looking for the biggest guns a research…
166
votes
5 answers

Can you raise a number to an irrational exponent?

The way that I was taught it in 8th grade algebra, a number raised to a fractional exponent, i.e. $a^\frac x y$ is equivalent to the denominatorth root of the number raised to the numerator, i.e. $\sqrt[y]{a^x}$. So what happens when you raise a…
tel
  • 1,913
166
votes
19 answers

Is there another simpler method to solve this elementary school math problem?

I am teaching an elementary student. He has a homework as follows. There are $16$ students who use either bicycles or tricycles. The total number of wheels is $38$. Find the number of students using bicycles. I have $3$ solutions as…
166
votes
4 answers

What happens when we (incorrectly) make improper fractions proper again?

Many folks avoid the "mixed number" notation such as $4\frac{2}{3}$ due to its ambiguity. The example could mean "$4$ and two thirds", i.e. $4+\frac{2}{3}$, but one may also be tempted to multiply, resulting in $\frac{8}{3}$. My questions pertain to…
166
votes
1 answer

Pythagorean triples that "survive" Euler's totient function

Suppose you have three positive integers $a, b, c$ that form a Pythagorean triple: \begin{equation} a^2 + b^2 = c^2. \tag{1}\label{1} \end{equation} Additionally, suppose that when you apply Euler's totient function to each term, the equation…
165
votes
6 answers

What are the numbers before and after the decimal point referred to in mathematics?

Is there an actual term for the numbers that appear before and after the decimal point? For example: 25.18 I know the 1 is in the tenths position, the 8 is in the hundredths position but I am seeking singular terms which apply to all of the numbers…
165
votes
16 answers

What's new in higher dimensions?

This is a very speculative/soft question; please keep this in mind when reading it. Here "higher" means "greater than 3". What I am wondering about is what new geometrical phenomena are there in higher dimensions. When I say new I mean phenomena…
165
votes
20 answers

Online tool for making graphs (vertices and edges)?

Anyone know of an online tool available for making graphs (as in graph theory - consisting of edges and vertices)? I have about 36 vertices and even more edges that I wish to draw. (why do I have so many? It's for pathing in a game) Only tool…
f20k
  • 1,753
164
votes
19 answers

What is the difference between a point and a vector?

I understand that a vector has direction and magnitude whereas a point doesn't. However, in the course notes that I am using, it is stated that a point is the same as a vector. Also, can you do cross product and dot product using two points instead…
6609081
  • 1,745