Questions tagged [linear-algebra]

For questions on linear algebra, including vector spaces, linear transformations, systems of linear equations, spanning sets, bases, dimensions and vector subspaces.

Linear algebra is concerned with vector spaces and linear transformations between them:

$$(x_1, \dots, x_n)\to a_1x_n+\dots+a_nx_n$$

Concepts include systems of linear equations, bases, dimensions, subspaces, matrices, determinants, kernels, null spaces, column spaces, traces, eigenvalues and eigenvectors, diagonalization and Jordan normal forms.

This is a general tag, most of the subjects included have secondary tags, e.g.

130434 questions
847
votes
20 answers

What's an intuitive way to think about the determinant?

In my linear algebra class, we just talked about determinants. So far I’ve been understanding the material okay, but now I’m very confused. I get that when the determinant is zero, the matrix doesn’t have an inverse. I can find the determinant of a…
Jamie Banks
  • 13,410
465
votes
4 answers

What is the intuitive relationship between SVD and PCA?

Singular value decomposition (SVD) and principal component analysis (PCA) are two eigenvalue methods used to reduce a high-dimensional data set into fewer dimensions while retaining important information. Online articles say that these methods are…
405
votes
36 answers

If $AB = I$ then $BA = I$

If $A$ and $B$ are square matrices such that $AB = I$, where $I$ is the identity matrix, show that $BA = I$. I do not understand anything more than the following. Elementary row operations. Linear dependence. Row reduced forms and their…
Dilawar
  • 6,353
369
votes
11 answers

What is the importance of eigenvalues/eigenvectors?

What is the importance of eigenvalues/eigenvectors?
350
votes
0 answers

Limit of sequence of growing matrices

Let $$ H=\left(\begin{array}{cccc} 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2\\ 0 & 1/2 & 1/2 & 0 \end{array}\right), $$ $K_1=\left(\begin{array}{c}1 \\ 0\end{array}\right)$ and consider the sequence of matrices defined by $$ K_L =…
324
votes
5 answers

Norms Induced by Inner Products and the Parallelogram Law

Let $ V $ be a normed vector space (over $\mathbb{R}$, say, for simplicity) with norm $ \lVert\cdot\rVert$. It's not hard to show that if $\lVert \cdot \rVert = \sqrt{\langle \cdot, \cdot \rangle}$ for some (real) inner product $\langle \cdot, \cdot…
285
votes
3 answers

How does one prove the determinant inequality $\det\left(6(A^3+B^3+C^3)+I_{n}\right)\ge 5^n\det(A^2+B^2+C^2)$?

Reposted on MathOverflow Let $\,A,B,C\in M_{n}(\mathbb C)\,$ be Hermitian and positive definite matrices such that $A+B+C=I_{n}$, where $I_{n}$ is the identity matrix. Show that $$\det\left(6(A^3+B^3+C^3)+I_{n}\right)\ge 5^n \det…
math110
  • 94,932
  • 17
  • 148
  • 519
271
votes
6 answers

Eigenvectors of real symmetric matrices are orthogonal

Can someone point me to a paper, or show here, why symmetric matrices have orthogonal eigenvectors? In particular, I'd like to see proof that for a symmetric matrix $A$ there exists decomposition $A = Q\Lambda Q^{-1} = Q\Lambda Q^{T}$ where…
267
votes
5 answers

What is the difference between linear and affine function?

I am a bit confused. What is the difference between a linear and affine function? Any suggestions will be appreciated.
user34790
  • 4,412
264
votes
7 answers

Why do we care about dual spaces?

When I first took linear algebra, we never learned about dual spaces. Today in lecture we discussed them and I understand what they are, but I don't really understand why we want to study them within linear algebra. I was wondering if anyone knew a…
WWright
  • 5,670
253
votes
8 answers

Proof that the trace of a matrix is the sum of its eigenvalues

I have looked extensively for a proof on the internet but all of them were too obscure. I would appreciate if someone could lay out a simple proof for this important result. Thank you.
241
votes
13 answers

Inverse of the sum of matrices

I have two square matrices: $A$ and $B$. $A^{-1}$ is known and I want to calculate $(A+B)^{-1}$. Are there theorems that help with calculating the inverse of the sum of matrices? In general case $B^{-1}$ is not known, but if it is necessary then it…
229
votes
6 answers

Why does this matrix give the derivative of a function?

I happened to stumble upon the following matrix: $$ A = \begin{bmatrix} a & 1 \\ 0 & a \end{bmatrix} $$ And after trying a bunch of different examples, I noticed the following remarkable pattern. If $P$ is a polynomial,…
224
votes
6 answers

What is the geometric interpretation of the transpose?

I can follow the definition of the transpose algebraically, i.e. as a reflection of a matrix across its diagonal, or in terms of dual spaces, but I lack any sort of geometric understanding of the transpose, or even symmetric matrices. For example,…
217
votes
8 answers

Intuitively, what is the difference between Eigendecomposition and Singular Value Decomposition?

I'm trying to intuitively understand the difference between SVD and eigendecomposition. From my understanding, eigendecomposition seeks to describe a linear transformation as a sequence of three basic operations ($P^{-1}DP$) on a vector: Rotation…
1
2 3
99 100