I need to calculate the following determinant in order to prove the following equality:
$$\det\begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix} = (a^2+b^2+c^2+d^2)^2.$$
I tried using Gauss-algorithm to get an easier matrix, but I'm not sure if I did it correctly.
Calling the $4$ lines $I$, $II$, $III$ and $IV$, I did:
(1) $II \cdot a$
(2) $III \cdot a$
(3) $IV \cdot a$
After this I did:
(4) $II' + I \cdot b$
(5) $III' + I \cdot c$
(6) $IV' + I \cdot d$
So finally I got the following matrix:
$$\begin{pmatrix} a & b & c & d \\ 0 & a^2+b^2 & bc-ad & ac+bd \\ 0 & ad+bc & a^2+c^2 & cd-ab \\ 0 & bd-ac & ab-cd & a^2+d^2 \end{pmatrix}.$$
I thought this would make the determinant a bit easier, unfortunately I must have done something wrong. Is multiplication with single lines allowed as I have done it?
Thank you very much.