We have been given matrix:
$$A =
\begin{pmatrix}
a& b& c &d \\
b &−a& d& −c\\
c& −d &−a& b \\
d &c& −b& −a\\
\end{pmatrix}
$$
...and have been asked to calculate $\det(A)$ using $AA^T$.
We see that:
$$AA^T=\begin{pmatrix} a^2+ b^2+ c^2+ d^2& 0& 0&0\\ 0 &a^2+ b^2+ c^2+ d^2& 0& 0\\ 0& 0 &a^2+ b^2+ c^2+ d^2& b \\ 0 &0& 0& a^2+ b^2+ c^2+ d^2\\ \end{pmatrix} $$
So, $\det(AA^T)= (a^2+ b^2+ c^2+ d^2)^4$
Now which should I choose: $(a^2+ b^2+ c^2+ d^2)^2 $ or $ -(a^2+ b^2+ c^2+ d^2)^2$ ?
Please explain me which one and why.