8

Let $a, b, c, d \in \mathbb K$ where $\mathbb K$ is a field. Prove that

$$\det \begin{bmatrix} a & -b & -c & -d\\ b & a & -d & c\\ c & d & a & -b\\ d & -c & b & a \end{bmatrix} = (a^2+b^2+c^2+d^2)^2$$

I'm looking for a smart way to solve this problem. If we denote

$$A = \begin{bmatrix} a & -b \\ b & a \\ \end{bmatrix}$$

and

$$B = \begin{bmatrix} -c & -d \\ -d & c \\ \end{bmatrix}$$

we have that $$ \begin{bmatrix} a & -b & -c & -d\\ b & a & -d & c\\ c & d & a & -b\\ d & -c & b & a \end{bmatrix} = \begin{bmatrix} A & B \\ -B & A \\ \end{bmatrix} $$ So it's sufficient to proof that

$$ \det \begin{bmatrix} A & B \\ -B & A \\ \end{bmatrix} = (\det A - \det B)^2. $$

Help?

glS
  • 7,963
user 242964
  • 1,928

2 Answers2

8

Calculate $$ P P^T $$ then think about it.

Or $$ P^T P $$

Will Jagy
  • 146,052
4

Generally, if $B$ is symmetric such that $A^TB=BA$, then $$ \det \begin{bmatrix} A & B \\ -B & A \\ \end{bmatrix} = \det (AA^T +BB^T). $$ In fact $$ \begin{bmatrix} A & B \\ -B & A \\ \end{bmatrix}\begin{bmatrix} A & B \\ -B & A \\ \end{bmatrix}^T=\begin{bmatrix} A & B \\ -B & A \\ \end{bmatrix}\begin{bmatrix} A^T & -B^T \\ B^T & A^T \\ \end{bmatrix} = \begin{bmatrix} AA^T+BB^T & -AB^T+BA^T \\ -BA^T+AB^T & AA^T+BB^T \\ \end{bmatrix}=\begin{bmatrix} AA^T+BB^T & 0 \\ 0 & AA^T+BB^T \\ \end{bmatrix} $$ and hence $$ \det\begin{bmatrix} A & B \\ -B & A \\ \end{bmatrix}=\sqrt{\det\begin{bmatrix} AA^T+BB^T & 0 \\ 0 & AA^T+BB^T \\ \end{bmatrix}}=\det(AA^T+BB^T).$$

xpaul
  • 47,821
  • How do you resolve $\pm$ on the square root? – Zach Teitler Sep 05 '17 at 03:20
  • @ZachTeitler, I think $\det\begin{bmatrix} A & B \ -B & A \ \end{bmatrix}$ is positive but I do not know how to show so far. – xpaul Sep 05 '17 at 13:23
  • the first identity should probably be $AB^T=BA^T$. Also, an argument to show the $\det$ is $+1$ is given in https://math.stackexchange.com/a/706532/173147 – glS Feb 19 '23 at 17:05