Let $a, b, c, d \in \mathbb K$ where $\mathbb K$ is a field. Prove that
$$\det \begin{bmatrix} a & -b & -c & -d\\ b & a & -d & c\\ c & d & a & -b\\ d & -c & b & a \end{bmatrix} = (a^2+b^2+c^2+d^2)^2$$
I'm looking for a smart way to solve this problem. If we denote
$$A = \begin{bmatrix} a & -b \\ b & a \\ \end{bmatrix}$$
and
$$B = \begin{bmatrix} -c & -d \\ -d & c \\ \end{bmatrix}$$
we have that $$ \begin{bmatrix} a & -b & -c & -d\\ b & a & -d & c\\ c & d & a & -b\\ d & -c & b & a \end{bmatrix} = \begin{bmatrix} A & B \\ -B & A \\ \end{bmatrix} $$ So it's sufficient to proof that
$$ \det \begin{bmatrix} A & B \\ -B & A \\ \end{bmatrix} = (\det A - \det B)^2. $$
Help?
smallmatrix; please avoid things likebmatrixorpmatrixin titles. – J. M. ain't a mathematician Sep 05 '17 at 03:06