4

This problem came out of the discussion in the comments of another problem by user @Dan.

Let $x,y,z$ be the sides of a triangle in random order and the vertices of the triangle be uniformly random on a circle. Experimental evidences show that for any $a > 1, b \ge \frac{a}{2}$, the probability

$$ P\left(\frac{x^a + y^a}{(x+y)^a} < \frac{z^b}{(x+y)^{b}}\right) = \frac{a^2-1}{3ab} \tag 1 $$

If we denote the above probability on the LHS by $f(a,b)$ then we have the interesting functional equation

$$ f(a^2,b^2) = \frac{a^2+1}{ab} f(a,b) $$

Question: Can this be proved or disproved?

Note: The special case $a=b$ gives $P\left(x^a + y^a \ge z^a\right) = \frac{2}{3} + \frac{1}{3a^2}$ if $x,y,z$ are in random order and equivalently $P\left(x^a + y^a \ge z^a\right) = \frac{1}{a^2}$ where $x \le y \le z$ was proved here.

1 Answers1

4

Using argument similar to this answer, we can prove that the probability evaluates to $\frac{a^2-1}{3ab}$ for $2b\ge a>1$.

Let $$x=2\sin\beta, y=2\sin(\alpha+\beta), z=2\sin\alpha$$ With $$\alpha,\beta>0;\alpha+\beta<\pi$$ And consider $$s=\frac{x}{z}=\frac{\sin\beta}{\sin\alpha},t=\frac{y}{z}=\frac{\sin(\alpha+\beta)}{\sin\alpha}$$ The mapping $(\alpha,\beta)\mapsto(s,t)$ is bijective onto the set of pairs $(s,t)\in\mathbb{R}^2$ satisfying $$s,t>0;s+t>1>|s-t|$$ And the Jacobian determinant of the mapping is $st$, the condition $x,y,z$ be the sides of a triangle in random order and the vertices of the triangle be uniformly random on a circle has Lebesgue measure $\pi^2/2$.

Using the change of variable $(\alpha,\beta)\mapsto(s,t)$, we get $$P\left(\frac{x^a+y^a}{(x+y)^a}<\frac{z^b}{(x+y)^b}\right)=\frac{2}{\pi^2}\int_{\Omega(a,b)}\frac{\mathrm ds\,\mathrm dt}{st}$$ With $$\Omega(a,b)=\left\{(s,t)\in\mathbb{R}^2:s,t>0;s^a+t^a<(s+t)^{a-b}\right\}$$ visual Since beyond $s+t>1$, the region $s^a+t^a<(s+t)^{a-b}$ lies inside $|s-t|<1$, therefore we do the substitution: $$m=s+t,n=s-t$$ And the probability becomes $$\frac{2}{\pi^2}\cdot\color{red}2\cdot2\int_{\omega(a,b)}\frac{\mathrm dm\,\mathrm dn}{m^2-n^2}=\frac{8}{\pi^2}\int_{\omega(a,b)}\frac{\mathrm dm\,\mathrm dn}{m^2-n^2}$$ With $$\omega(a,b)=\left\{(m,n)\in\mathbb{R}^2:m>1,\color{red}{0<n}<1,\left(\frac{m+n}{2}\right)^a+\left(\frac{m-n}{2}\right)^a<m^{a-b}\right\}$$ Let $m=u(n)$ be the unique positive real root of $\left(\frac{m+n}{2}\right)^a+\left(\frac{m-n}{2}\right)^a=m^{a-b}$, then $\left(\frac{m+n}{2}\right)^a+\left(\frac{m-n}{2}\right)^a<m^{a-b}\implies m<u(n)$, therefore by Fubini's theorem: $$\frac{8}{\pi^2}\int_{\omega(a,b)}\frac{\mathrm dm\,\mathrm dn}{m^2-n^2}=\frac{8}{\pi^2}\int_{0}^{1}\int_{1}^{u(n)}\frac{\mathrm dm}{m^2-n^2}\,\mathrm dn=\frac{4}{\pi^2}\int_{0}^{1}\frac{\ln\frac{u(n)-n}{u(n)+n}-\ln\frac{1-n}{1+n}}{n}\,\mathrm dn$$

Let $$n=uv,v\ge 0$$ $$\implies \left(\frac{u+uv}{2}\right)^a+\left(\frac{u-uv}{2}\right)^a=u^{a-b}$$ $$\implies u^{-b}=\left(\frac{1+v}{2}\right)^a+\left(\frac{1-v}{2}\right)^a$$ $$\implies u=\sqrt[-b]{\left(\frac{1+v}{2}\right)^a+\left(\frac{1-v}{2}\right)^a}$$ $$\implies n=v\sqrt[-b]{\left(\frac{1+v}{2}\right)^a+\left(\frac{1-v}{2}\right)^a}$$ When $v$ runs from $0$ to $1$, $n$ also runs from $0$ to $1$, and $u(n)$ stays above $1$, so we may do the substutition $$n=v\sqrt[-b]{\left(\frac{1+v}{2}\right)^a+\left(\frac{1-v}{2}\right)^a}$$ $$\implies \frac{\mathrm dn}{n}=\frac{1}{v}-\frac{a}{b}\cdot\frac{(1+v)^{a-1}-(1-v)^{a-1}}{(1+v)^a+(1-v)^a}\,\mathrm dv$$ $$\implies \int_{0}^{1}\frac{\ln\frac{u(n)-n}{u(n)+n}-\ln\frac{1-n}{1+n}}{n}\,\mathrm dn=-\frac{a}{b}\int_{0}^{1}\frac{(1+v)^{a-1}-(1-v)^{a-1}}{(1+v)^a+(1-v)^a}\ln\frac{1-v}{1+v}\,\mathrm dv$$ Next, do the substitution $$v=\tanh w\implies \mathrm dv=\frac{\mathrm dw}{\cosh^2 w}, \ln\frac{1-v}{1+v}=-2w,\\\frac{(1+v)^{a-1}-(1-v)^{a-1}}{(1+v)^a+(1-v)^a}=\frac{\cosh w\sinh((a-1)w)}{\cosh(aw)}$$ And the probability becomes $$\frac{8a}{b\pi^2}\int_{0}^{\infty}\frac{w\sinh((a-1)w)}{\cosh w\cosh (aw)}\,\mathrm dw=\frac{8a}{b\pi^2}\int_{0}^{\infty}w(\tanh(aw)-\tanh w)\,\mathrm dw$$ Let $$I(a)=\int_{0}^{\infty}w(\tanh(aw)-\tanh w)\,\mathrm dw$$ $$\implies I'(a)=\int_{0}^{\infty}\frac{w^2}{\cosh^2(aw)}\,\mathrm dw$$ Finally, do the substitution $z=aw$ $$\implies I'(a)=\int_{0}^{\infty}\frac{z^2}{a^3\cosh^2 z}\,\mathrm dz$$ It is proven in this answer, by rewriting the integrand then expand the denominator $\frac{1}{\left(1+e^{-2z}\right)^2}$, that $$\int_{0}^{\infty}\frac{z^2}{\cosh^2 z}\,\mathrm dz=\frac{\pi^2}{12}$$ Therefore $$I(a)=\int_{1}^{a}I'(t)\,\mathrm dt=\int_{1}^{a}\frac{\pi^2}{12t^3}\,\mathrm dt=\frac{\pi^2}{24}\left(1-\frac{1}{a^2}\right)$$ Connecting all the pieces together, we obtain $$\boxed{P\left(\frac{x^a+y^a}{(x+y)^a}<\frac{z^b}{(x+y)^b}\right)=\frac{8a}{b\pi^2}\cdot\frac{\pi^2}{24}\left(1-\frac{1}{a^2}\right)=\frac{a^2-1}{3ab}}$$

Thinh Dinh
  • 8,233