You can in fact prove it by induction on $n$. For the induction step observe that
$$\begin{align*}
\left(\sum_{k=1}^{n+1}x_k\right)\left(\sum_{k=1}^{n+1}\frac1{x_k}\right)&=\left(\sum_{k=1}^nx_k+x_{n+1}\right)\left(\sum_{k=1}^n\frac1{x_k}+\frac1{x_{n+1}}\right)\\
&=\left(\sum_{k=1}^nx_k\right)\left(\sum_{k=1}^n\frac1{x_k}\right)+x_{n+1}\sum_{k=1}^n\frac1{x_k}+\frac1{x_{n+1}}\sum_{k=1}^nx_k+1\\
&\ge n^2+1+x_{n+1}\sum_{k=1}^n\frac1{x_k}+\frac1{x_{n+1}}\sum_{k=1}^nx_k\;;
\end{align*}$$
$(n+1)^2=n^2+2n+1$, so to finish the step, it suffices to show that
$$x_{n+1}\sum_{k=1}^n\frac1{x_k}+\frac1{x_{n+1}}\sum_{k=1}^nx_k\ge 2n\;.$$
For $k=1,\ldots,n$ let $u_k=\dfrac{x_k}{x_{n+1}}$; then
$$x_{n+1}\sum_{k=1}^n\frac1{x_k}+\frac1{x_{n+1}}\sum_{k=1}^nx_k=\sum_{k=1}^n\left(\frac1{u_k}+u_k\right)\;,$$
and it’s not hard to show that if $u>0$, then $\dfrac1u+u\ge 2$, either by showing that $f(u)=\frac1u+u$ on the positive reals has a minimum at $u=1$, or by observing that for $u>0$ we have $f(u)\ge 2$ if and only if $u^2+1\ge 2u$ and showing that this inequality is always true.