4

Let $a_1,...,a_n$ be a sequence of positive numbers. Show that

$$(a_1+a_2+\cdots+a_n)\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\right)\geq n^2$$

Hint: Use the fact that for $x>0$ we have $x+(1/x)\geq 2$.

My idea is to use induction. But I can't seem to make it work. On the other hand, I don't see how the hint is going to take me where I need to go.

Spenser
  • 20,135
nonremovable
  • 1,857

4 Answers4

8

Induction is not necessary. Note that:

\begin{align} (a_1+a_2+\cdots+a_n)&\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\right) \\&= \left(\frac{a_1}{a_1} + \frac{a_1}{a_2} + \cdots + \frac{a_1}{a_n} \right)+\cdots + \left(\dfrac{a_n}{a_1}+\dfrac{a_n}{a_2}\cdots+\frac{a_n}{a_n}\right)\\&= \sum_{i=1}^n\sum_{j=1}^n\frac{a_i}{a_j} = \frac{1}{2} \sum_{i=1}^n\sum_{j=1}^n\left(\frac{a_i}{a_j} + \frac{a_j}{a_i}\right) \\ &\stackrel{*}{\geq} \frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n 2 = \frac{1}{2}\sum_{i=1}^n 2n = \frac{1}{2}·2n^2 = n^2\end{align}

Where in $*$ we used the hint $x + \displaystyle\frac{1}{x} \geq 2$ taking $x = \displaystyle\frac{a_i}{a_j}$

Souza
  • 981
Darth Geek
  • 12,543
  • 2
    change $\frac{a_i}{a_j} + \frac{a_j}{a_i}$ to $\left(\frac{a_i}{a_j} + \frac{a_j}{a_i}\right)$ will look better. – mike Aug 29 '14 at 01:46
5

This is equivalent to:

$$\frac{a_1+a_2+\ldots+a_n}{n}\geq \frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}}$$

Where the LHS is the Arithmetic Mean and the RHS is the Harmonic Mean.

Those are power means defined as:

$$M_p = \left(\frac{1}{n}\sum_{k=1}^na_k^p\right)^{1/p}$$

It is known that $M_p \geq M_q$ iff $p \geq q$.

Note that the Arithmetic Mean is $M_1$ and the Harmonic Mean is $M_{-1}$

Darth Geek
  • 12,543
2

Induction works just fine with the hint:

$$(a_1+\ldots+a_n)\left(\frac{1}{a_1}+\ldots+\frac{1}{a_n}\right)=(a_1+\ldots+a_{n-1})\left(\frac{1}{a_1}+\ldots+\frac{1}{a_{n-1}}\right)+\frac{a_1}{a_n}+\frac{a_n}{a_1}+\ldots+\frac{a_{n-1}}{a_n}+\frac{a_n}{a_{n-1}}+1$$

WimC
  • 33,414
  • 2
  • 52
  • 98
1

Clearly is valid for $n=1$. Assume that it holds for $n$ positive numbers. $$\Big((a_1+\cdots+a_n)+a_{n+1}\Big)\Big((\frac{1}{a_1}+\cdots+\frac{1}{a_n})+\frac{1}{a_{n+1}}\Big)=(a_1+\cdots+a_n)(\frac{1}{a_1}+\cdots+\frac{1}{a_n})$$ $$+(\frac{a_1}{a_{n+1}}+\cdots\frac{a_n}{a_{n+1}})+(\frac{a_{n+1}}{a_{1}}+\cdots\frac{a_{n+1}}{a_{n}})+1$$ $$\geq n^2+\Big((\frac{a_{n+1}}{a_{1}}+\frac{a_1}{a_{n+1}})+\cdots(\frac{a_{n+1}}{a_{n}}+\frac{a_n}{a_{n+1}})\Big)+1\geq n^2+2n+1=(n+1)^2.$$ Notice that $x+\frac{1}{x}\geq 2$ as long as $x>0.$

BigM
  • 4,064