1

Let $A$ be symmetric positive definite matrix $n\times n$. Prove that $$\operatorname{trace} (A) \cdot \operatorname{trace} \left( A^{-1} \right) \ge n^2$$


I am stuck on this problem. I have no idea how to proceed, so any help would be welcome.

1 Answers1

1

Hint: Let $D$ be a $n\times n$ diagonal matrix with eigenvalues $0<\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Then we see that

\begin{align} \operatorname{tr}(D)\operatorname{tr}(D^{-1}) =&\ \left(\lambda_1+\dots +\lambda_n \right)\left(\frac{1}{\lambda_1}+\dots+\frac{1}{\lambda_n} \right)\geq\ n^2 \end{align} where the last inequality follows from the AM-HM inequality.

Jacky Chong
  • 26,287