I suspect the following holds: $$\vdash \phi(x,y,\ldots,z)\iff \vdash\forall x\forall y\cdots\forall z\phi(x,y,\ldots,z)$$ where $\phi$ is a formula with free variables $x,y,\ldots, z$. Here is my argument using Natural Deduction :
$(\Rightarrow):$ $\vdash\phi(x,y,\ldots,z)$ means $\vdash\phi(x',y',\ldots,z')$ for new variables $x',y',\ldots,z'$. Now we may use $\forall$-introduction:
$$\frac{\dfrac{\phi(x',y',\ldots,z')}{\forall x\phi(x,y',\ldots,z')}}{\dfrac{\vdots}{\forall x\forall y\cdots\forall z \phi(x,y,\ldots,z)}}$$
$(\Leftarrow):$ using $\forall$-elimination repeatedly:
$$\frac{\dfrac{\forall x\forall y\cdots\forall z \phi(x,y,\ldots,z)}{\forall y\cdots\forall z \phi(x,y,\ldots,z)}}{\dfrac{\vdots}{\phi(x,y,\ldots,z)}}$$
Is the proof correct?