Proceeding similar to this,
$$I=\int^1_0\ln\left({\frac{1+x}{1-x}}\right)\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)dx$$
Using the below Taylor series,
$$\color{red}{\ln\left(\frac{1+x}{1-x}\right)=2\sum_{n=0}^{\infty}\frac{x^{2n+1}}{2n+1}}$$
$$I=2\sum_{n=0}^{\infty}\frac{1}{2n+1}\int_0^1x^{2n+1}\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)\,dx$$
Integrating by parts, we get
If interested in all the steps/working of the integration by parts, see here
$$I=4\sum_{n=0}^{\infty}\frac{1}{(2n+1)(2n+2)}\int_0^1 \frac{x^{2n+1}}{\sqrt{1-x^2}}\,dx$$
$$\color{red}{\int_0^1 \frac{x^{2n+1}}{\sqrt{1-x^2}}\,dx=\frac{\sqrt{\pi}}{2}\frac{\Gamma(n+1)}{\Gamma\left(n+\frac{3}{2}\right)}=\frac{4^n}{(2n+1)\binom{2n}{n}}}$$
Found the above result here
Using the above result,
$$I=4\sum_{n=0}^{\infty}\frac{1}{(2n+1)^2(2n+2)}\frac{4^n}{\binom{2n}{n}}$$
Now comes the hard part,
These are known sums in disguise, but only after partial fraction (complete partial fraction gives diverging series),
$$\color{red}{\frac{1}{(2n+1)^2(2n+2)}=\frac{1}{(2n+1)^2}-\frac{1}{(2n+1)(2n+2)}}$$
So,
$$I=4 \sum_{n=0}^\infty \frac{1}{(2n+1)^2(2n+2)}\frac{4^n}{\binom{2n}{n}}=4\sum_{n=0}^\infty\frac{1}{(2n+1)^2}\frac{4^n}{\binom{2n}{n}}-4\sum_{n=0}^\infty\frac{1}{(2n+1)(2n+2)}\frac{4^n}{\binom{2n}{n}}$$
After a long search, I found this expansion,
Starting from,
$$\color{red}{\arcsin(x)=\sum_{n\geq 0}\frac{\binom{2n}{n}}{4^n(2n+1)}x^{2n+1}}$$
$$\implies \sum_{n=0}^{\infty} \frac{4^n}{\displaystyle(2 n+1)^2\binom{2n}{n}} = \int_0^1 \frac{\arcsin(t)}{t \sqrt{1-t^2}}\,dt$$
Now to evaluate this integral,
$$\int_0^1 \frac{\arcsin(t)}{t \sqrt{1-t^2}}\,dt\underset{t\to\sin t}\implies \int_0^\frac{\pi}{2}\frac{t}{\sin t}\,dt$$
Now this is a popular integral (whose proof is here)
$$\therefore \color{red}{\sum_{n=0}^{\infty} \frac{4^n}{\displaystyle(2 n+1)^2\binom{2n}{n}} = 2G}\tag1$$
Now using the below Taylor series which I found here,
$$\color{red}{(\arcsin x)^2=\sum_{n \ge 0}\frac{4^n}{(2n+1)(n+1)\binom{2n}{n}}x^{2n+2}}$$
Set $x=1$ and dividing both sides by $2$,
$$\therefore \color{blue}{\sum_{n \ge 0}\frac{4^n}{(2n+1)(2n+2)\binom{2n}{n}}=\frac{\pi^2}{8}}\tag2$$
Our integral is $4\times (1)-4\times (2)$
$$\therefore{\color{green}{\int^1_0\ln\left({\frac{1+x}{1-x}}\right)\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)dx=8G-\frac{\pi^2}{2}}}$$