$$I=\int^1_0\frac{1}{x}\ln\left({\frac{1+x}{1-x}}\right)\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)dx$$
As the bounds are from $0$ to $1$ , needless to say that this series stands for $|x|<1$,
$$\ln\left(\frac{1+x}{1-x}\right)=2\sum_{n=0}^{\infty}\frac{x^{2n+1}}{2n+1}$$
A simple transformation taken from here
$$I=2\int^1_0\frac{1}{x}\sum_{n=0}^{\infty}\frac{x^{2n+1}}{2n+1}\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)dx $$
$$I=2\sum_{n=0}^{\infty}\frac{1}{2n+1}\int_0^1x^{2n}\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)\,dx$$
Integrating by parts, we get
$$I=4\sum_{n=0}^{\infty}\frac{1}{(2n+1)^2}\int_0^1 \frac{x^{2n}}{\sqrt{1-x^2}}\,dx$$
Solving that integral is done here
Basically substitute $\sin(\theta)=x$ and then using the Wallis product
$$2\int_0^1 \frac{x^{2n}}{\sqrt{1-x^2}}\,dx=\frac{\pi}{4^n} \binom{2 n}{n}$$
Using this,
Basically the sum is solved using a well known identity of $\binom{2 n}{n}$ and then using this awesome technique; derivative of the beta function
$$\color{blue}{\sum_{n=0}^{\infty}\frac{1}{(2n+1)^2}\frac{\binom{2 n}{n}}{4^n}=\frac{1}{2}\pi\ln(2)}$$
Refer this and this for better understanding
$$I=2\pi\sum_{n=0}^{\infty}\frac{1}{(2n+1)^2}\frac{\binom{2 n}{n}}{4^n} =\pi^2\ln(2)$$
$$\boxed{\color{red}{\int^1_0\frac{1}{x}\ln\left({\frac{1+x}{1-x}}\right)\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)dx=\pi^2\ln(2)}}$$
Quick run of the "Integrating by parts" claimed above,
$$J=\int
x^{2n}\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)\,dx$$
$$J=\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)\int
x^{2n}\,dx-\int
\frac{d}{dx}\left(\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)\right)\int
x^{2n}\,dx\,dx$$
$$\frac{d}{dx}\left(\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)\right)=\frac{-2}{x\sqrt{1-x^2}}$$
$$J=\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)\frac{x^{2n+1}}{2n+1}+\frac{2}{2n+1}\int \frac{x^{2n+1}}{x\sqrt{1-x^2}}\,dx$$
$$J=\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)\frac{x^{2n+1}}{2n+1}+\frac{2}{2n+1}\int \frac{x^{2n}}{\sqrt{1-x^2}}\,dx$$
Applying the bounds $[0,1]$,
$$\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)\frac{x^{2n+1}}{2n+1}|_0^1=0$$
$$J=\frac{2}{2n+1}\int \frac{x^{2n}}{\sqrt{1-x^2}}\,dx$$