How to evaluate :$$I=\int^1_0 \ln\left({x+\sqrt{1+x^2}}\right)\ln\left({\frac{1+\sqrt{1-x^2}}{x}}\right)dx$$
My attempt: \begin{align*} I & =\int^1_0 \ln\left({x+\sqrt{1+x^2}}\right)\ln\left({\frac{1+\sqrt{1-x^2}}{x}}\right)dx \\[2mm] & = \int^1_0 \ln\left({x+\sqrt{1+x^2}}\right)\ln\left({\frac{x}{1-\sqrt{1-x^2}}}\right)dx \end{align*} Hence: $$2I=\int^1_0 \ln\left({x+\sqrt{1+x^2}}\right)\ln\left({\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)dx$$
How do I continue to answer?