I would like to consider a generalization of this problem.
Define the function $\mathcal{I}:\mathbb{R}\times[-1,1]\rightarrow\mathbb{R}$ via the definite integral
$$\mathcal{I}{\left(a,b\right)}:=\int_{0}^{1}\mathrm{d}x\,\frac{b\arctan{\left(ax\right)}}{\sqrt{1-b^{2}x^{2}}},$$
where the real arctangent may be given by the usual integral representation
$$\arctan{\left(z\right)}=\int_{0}^{z}\mathrm{d}y\,\frac{1}{1+y^{2}};~~~\small{z\in\mathbb{R}}.$$
Suppose $0<a\land0<b\le1$, and set $p:=\frac{a}{b}>0\land\beta:=\arcsin{\left(b\right)}\in\left(0,\frac{\pi}{2}\right]$.
Next, set $z:=\tan{\left(\frac{\beta}{2}\right)}\in(0,1]\land c:=p+\sqrt{1+p^{2}}=\frac{1}{\sqrt{1+p^{2}}-p}>1$.
$$\begin{align}
\mathcal{I}{\left(a,b\right)}
&=\int_{0}^{1}\mathrm{d}x\,\frac{b\arctan{\left(ax\right)}}{\sqrt{1-b^{2}x^{2}}}\\
&=\int_{0}^{b}\mathrm{d}y\,\frac{\arctan{\left(\frac{a}{b}y\right)}}{\sqrt{1-y^{2}}};~~~\small{\left[x=b^{-1}y\right]}\\
&=\int_{0}^{\arcsin{\left(b\right)}}\mathrm{d}\varphi\,\arctan{\left(\frac{a}{b}\sin{\left(\varphi\right)}\right)};~~~\small{\left[y=\sin{\left(\varphi\right)}\right]}\\
&=\int_{0}^{\beta}\mathrm{d}\varphi\,\arctan{\left(p\sin{\left(\varphi\right)}\right)}\\
&=\int_{0}^{\tan{\left(\frac{\beta}{2}\right)}}\mathrm{d}t\,\frac{2}{1+t^{2}}\arctan{\left(p\sin{\left(2\arctan{\left(t\right)}\right)}\right)};~~~\small{\left[\varphi=2\arctan{\left(t\right)}\right]}\\
&=\int_{0}^{\tan{\left(\frac{\beta}{2}\right)}}\mathrm{d}t\,\frac{2}{1+t^{2}}\arctan{\left(\frac{2pt}{1+t^{2}}\right)}\\
&=\int_{0}^{\tan{\left(\frac{\beta}{2}\right)}}\mathrm{d}t\,\frac{2}{1+t^{2}}\left[\arctan{\left(\frac{t}{\sqrt{1+p^{2}}-p}\right)}-\arctan{\left(\frac{t}{\sqrt{1+p^{2}}+p}\right)}\right]\\
&=\int_{0}^{z}\mathrm{d}t\,\frac{2}{1+t^{2}}\left[\arctan{\left(ct\right)}-\arctan{\left(c^{-1}t\right)}\right]\\
&=\int_{0}^{z}\mathrm{d}t\,\frac{2\arctan{\left(ct\right)}}{1+t^{2}}-\int_{0}^{z}\mathrm{d}t\,\frac{2\arctan{\left(c^{-1}t\right)}}{1+t^{2}}\\
&=\mathcal{J}{\left(c,z\right)}-\mathcal{J}{\left(c^{-1},z\right)},\\
\end{align}$$
where in the last line above we've introduced the auxiliary function $\mathcal{J}:\mathbb{R}^{2}\rightarrow\mathbb{R}$, defined by
$$\mathcal{J}{\left(c,z\right)}:=\int_{0}^{z}\mathrm{d}t\,\frac{2\arctan{\left(ct\right)}}{1+t^{2}}.$$
Suppose $0<c\land0<z$. Setting $\omega:=2\arctan{\left(z\right)}\in(0,\pi)$, we have $z=\tan{\left(\frac{\omega}{2}\right)}$ and $\frac{1-z^{2}}{1+z^{2}}=\cos{\left(\omega\right)}$.
$$\begin{align}
\mathcal{J}{\left(c,z\right)}
&=\int_{0}^{z}\mathrm{d}t\,\frac{2\arctan{\left(ct\right)}}{1+t^{2}}\\
&=\int_{0}^{z}\mathrm{d}t\,\frac{2}{1+t^{2}}\int_{0}^{1}\mathrm{d}x\,\frac{ct}{1+c^{2}x^{2}t^{2}}\\
&=\int_{0}^{z}\mathrm{d}t\int_{0}^{1}\mathrm{d}x\,\frac{2ct}{(1+t^{2})(1+c^{2}x^{2}t^{2})}\\
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{z}\mathrm{d}t\,\frac{2ct}{(1+t^{2})(1+c^{2}x^{2}t^{2})}\\
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{z^{2}}\mathrm{d}u\,\frac{c}{(1+u)(1+c^{2}x^{2}u)};~~~\small{\left[t^{2}=u\right]}\\
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{z^{2}}\mathrm{d}u\,\frac{c}{1-c^{2}x^{2}}\left[\frac{1}{1+u}-\frac{c^{2}x^{2}}{1+c^{2}x^{2}u}\right]\\
&=\int_{0}^{1}\mathrm{d}x\,\frac{c}{1-c^{2}x^{2}}\left[\int_{0}^{z^{2}}\mathrm{d}u\,\frac{1}{1+u}-\int_{0}^{z^{2}}\mathrm{d}u\,\frac{c^{2}x^{2}}{1+c^{2}x^{2}u}\right]\\
&=\int_{0}^{1}\mathrm{d}x\,\frac{c}{1-c^{2}x^{2}}\left[\ln{\left(1+z^{2}\right)}-\ln{\left(1+c^{2}x^{2}z^{2}\right)}\right]\\
&=\int_{0}^{c}\mathrm{d}y\,\frac{1}{1-y^{2}}\left[\ln{\left(1+z^{2}\right)}-\ln{\left(1+y^{2}z^{2}\right)}\right];~~~\small{\left[cx=y\right]}\\
&=-\int_{0}^{c}\mathrm{d}y\,\frac{1}{1-y^{2}}\ln{\left(\frac{1+z^{2}y^{2}}{1+z^{2}}\right)}\\
&=-\int_{1}^{\frac{1-c}{1+c}}\mathrm{d}t\,\frac{(-1)}{2t}\ln{\left(\frac{1+z^{2}(\frac{1-t}{1+t})^{2}}{1+z^{2}}\right)};~~~\small{\left[y=\frac{1-t}{1+t}\right]}\\
&=-\int_{\frac{1-c}{1+c}}^{1}\mathrm{d}t\,\frac{1}{2t}\ln{\left(\frac{(1+t)^{2}+z^{2}(1-t)^{2}}{(1+z^{2})(1+t)^{2}}\right)}\\
&=-\int_{\frac{1-c}{1+c}}^{1}\mathrm{d}t\,\frac{1}{2t}\ln{\left(\frac{(1+z^{2})+2(1-z^{2})t+(1+z^{2})t^{2}}{(1+z^{2})(1+t)^{2}}\right)}\\
&=-\int_{\frac{1-c}{1+c}}^{1}\mathrm{d}t\,\frac{1}{2t}\ln{\left(\frac{1+2t(\frac{1-z^{2}}{1+z^{2}})+t^{2}}{(1+t)^{2}}\right)}\\
&=-\int_{\frac{1-c}{1+c}}^{1}\mathrm{d}t\,\frac{1}{2t}\ln{\left(\frac{1+2t\cos{\left(\omega\right)}+t^{2}}{(1+t)^{2}}\right)}\\
&=\int_{\frac{1-c}{1+c}}^{1}\mathrm{d}t\,\frac{1}{2t}\left[2\ln{\left(1+t\right)}-\ln{\left(1+2t\cos{\left(\omega\right)}+t^{2}\right)}\right]\\
&=\int_{\frac{1-c}{1+c}}^{1}\mathrm{d}t\,\left[\frac{\ln{\left(1+t\right)}}{t}-\frac{\ln{\left(1+2t\cos{\left(\omega\right)}+t^{2}\right)}}{2t}\right]\\
&=\int_{\frac{1-c}{1+c}}^{1}\mathrm{d}t\,\left[\frac{\ln{\left(1+t\right)}}{t}-\frac{\ln{\left(1-2t\cos{\left(\pi-\omega\right)}+t^{2}\right)}}{2t}\right].\\
\end{align}$$
Set $r:=\frac{1-c}{1+c}\in(-1,1)\land\theta:=\pi-\omega\in(0,\pi)$. Then,
$$\begin{align}
\mathcal{J}{\left(c,z\right)}
&=\int_{\frac{1-c}{1+c}}^{1}\mathrm{d}t\,\left[\frac{\ln{\left(1+t\right)}}{t}-\frac{\ln{\left(1-2t\cos{\left(\pi-\omega\right)}+t^{2}\right)}}{2t}\right]\\
&=\int_{r}^{1}\mathrm{d}t\,\left[\frac{\ln{\left(1+t\right)}}{t}-\frac{\ln{\left(1-2t\cos{\left(\theta\right)}+t^{2}\right)}}{2t}\right]\\
&=\int_{r}^{1}\mathrm{d}t\,\frac{\ln{\left(1+t\right)}}{t}-\int_{r}^{1}\mathrm{d}t\,\frac{\ln{\left(1-2t\cos{\left(\theta\right)}+t^{2}\right)}}{2t}\\
&=\int_{-1}^{-r}\mathrm{d}u\,\frac{(-1)\ln{\left(1-u\right)}}{u};~~~\small{\left[t=-u\right]}\\
&~~~~~-\frac12\int_{0}^{1}\mathrm{d}t\,\frac{\ln{\left(1-2t\cos{\left(\theta\right)}+t^{2}\right)}}{t}+\frac12\int_{0}^{r}\mathrm{d}t\,\frac{\ln{\left(1-2t\cos{\left(\theta\right)}+t^{2}\right)}}{t}\\
&=-\operatorname{Li}_{2}{\left(-1\right)}+\operatorname{Li}_{2}{\left(-r\right)}+\operatorname{Li}_{2}{\left(1,\theta\right)}-\operatorname{Li}_{2}{\left(r,\theta\right)}\\
&=\left(\frac{\pi}{2}-\frac{\theta}{2}\right)^{2}+\operatorname{Li}_{2}{\left(-r\right)}-\operatorname{Li}_{2}{\left(r,\theta\right)}\\
&=\frac14\omega^{2}+\operatorname{Li}_{2}{\left(-\frac{1-c}{1+c}\right)}-\operatorname{Li}_{2}{\left(\frac{1-c}{1+c},\pi-\omega\right)}\\
&=\left[\arctan{\left(z\right)}\right]^{2}+\operatorname{Li}_{2}{\left(-\frac{1-c}{1+c}\right)}-\operatorname{Li}_{2}{\left(\frac{1-c}{1+c},\pi-2\arctan{\left(z\right)}\right)},\\
\end{align}$$
where the dilogarithm and its two-variable variant are given by the integrals
$$\operatorname{Li}_{2}{\left(z\right)}:=-\int_{0}^{z}\mathrm{d}t\,\frac{\ln{\left(1-t\right)}}{t};~~~\small{z\in(-\infty,1]},$$
$$\operatorname{Li}_{2}{\left(r,\theta\right)}:=-\frac12\int_{0}^{r}\mathrm{d}t\,\frac{\ln{\left(1-2t\cos{\left(\theta\right)}+t^{2}\right)}}{t};~~~\small{(r,\theta)\in\mathbb{R}^{2}}.$$
Note: It can be shown that
$$\operatorname{Li}_{2}{\left(1,\theta\right)}=\operatorname{Li}_{2}{\left(-1\right)}+\left(\frac{\pi}{2}-\frac{\theta}{2}\right)^{2};~~~\small{0<\theta<\pi}.$$
Putting everything together, we obtain the following closed form expression for $\mathcal{I}$:
$$\begin{align}
\mathcal{I}{\left(a,b\right)}
&=\mathcal{J}{\left(c,z\right)}-\mathcal{J}{\left(c^{-1},z\right)}\\
&=\left[\arctan{\left(z\right)}\right]^{2}+\operatorname{Li}_{2}{\left(-\frac{1-c}{1+c}\right)}-\operatorname{Li}_{2}{\left(\frac{1-c}{1+c},\pi-2\arctan{\left(z\right)}\right)}\\
&~~~~~-\left[\arctan{\left(z\right)}\right]^{2}-\operatorname{Li}_{2}{\left(\frac{1-c}{1+c}\right)}+\operatorname{Li}_{2}{\left(-\frac{1-c}{1+c},\pi-2\arctan{\left(z\right)}\right)}\\
&=\operatorname{Li}_{2}{\left(-\frac{1-c}{1+c}\right)}-\operatorname{Li}_{2}{\left(\frac{1-c}{1+c}\right)}\\
&~~~~~+\operatorname{Li}_{2}{\left(-\frac{1-c}{1+c},\pi-2\arctan{\left(z\right)}\right)}-\operatorname{Li}_{2}{\left(\frac{1-c}{1+c},\pi-2\arctan{\left(z\right)}\right)}\\
&=\operatorname{Li}_{2}{\left(-\frac{1-c}{1+c}\right)}-\operatorname{Li}_{2}{\left(\frac{1-c}{1+c}\right)}+\operatorname{Li}_{2}{\left(-\frac{1-c}{1+c},\pi-\beta\right)}-\operatorname{Li}_{2}{\left(\frac{1-c}{1+c},\pi-\beta\right)}\\
&=\operatorname{Li}_{2}{\left(-\frac{1-c}{1+c}\right)}-\operatorname{Li}_{2}{\left(\frac{1-c}{1+c}\right)}+\operatorname{Li}_{2}{\left(-\frac{1-c}{1+c},\pi-\beta\right)}-\operatorname{Li}_{2}{\left(-\frac{1-c}{1+c},\beta\right)}\\
&=\operatorname{Li}_{2}{\left(\frac{p}{1+\sqrt{1+p^{2}}}\right)}-\operatorname{Li}_{2}{\left(-\frac{p}{1+\sqrt{1+p^{2}}}\right)}\\
&~~~~~+\operatorname{Li}_{2}{\left(\frac{p}{1+\sqrt{1+p^{2}}},\pi-\beta\right)}-\operatorname{Li}_{2}{\left(\frac{p}{1+\sqrt{1+p^{2}}},\beta\right)}\\
&=\operatorname{Li}_{2}{\left(\frac{a}{b+\sqrt{a^{2}+b^{2}}}\right)}-\operatorname{Li}_{2}{\left(-\frac{a}{b+\sqrt{a^{2}+b^{2}}}\right)}\\
&~~~~~+\operatorname{Li}_{2}{\left(\frac{a}{b+\sqrt{a^{2}+b^{2}}},\pi-\arcsin{\left(b\right)}\right)}-\operatorname{Li}_{2}{\left(\frac{a}{b+\sqrt{a^{2}+b^{2}}},\arcsin{\left(b\right)}\right)}.\blacksquare\\
\end{align}$$