Mellin transform of $h(t)=f^{-1}(t)$ is:
$$M_s(h(t))=\int_0^\infty x^{s-1}h(t)dt\mathop=^{h(t)\to t}\int_0^\infty t f(t)^{s-1} df(t)=?$$
Could someone go through a step-by-step.
First part:
Using: $$h(t)=f^{-1}(t)$$ substituting: $u=f^{-1}(t)$ ->$f(u)=t$-> $df(u)=dt$
$$\int_0^\infty x^{s-1}h(t)dt=\\\int_0^\infty x^{s-1}f^{-1}(t)dt=\\\int_0^\infty f(u)^{s-1}f^{-1}(f(u))df(u)=\\\int_0^\infty f(u)^{s-1}u df(u)=\\\int_0^\infty tf(t)^{s-1}df(t)=?$$
Second part:
Assuming that $f$ is continuous and of local finite variation on $[0,\infty)$,
$$d_t(f(t)^{s-1})=(s-1)f(t)^{-1} f(t)^{s-1}df(t)$$
Integration by parts yields
$$\int_0^\infty tf(t)^{s-1}df(t)=\frac{1}{s-1}\int^\infty_0t f(t) d_t(f(t)^{s-1})=? $$
Similar question may find here,I can't integrate by parts.
Thanks.