Laplace transform of $h(t)=f^{-1}(t)$ is:
$$L_s(h(t))=\int_0^\infty e^{-st}h(t)dt\mathop=^{h(t)\to t}\int_0^\infty t e^{-s f(t)} df(t)=\frac1s\int_0^\infty e^{-sf(t)}dt\mathop.$$
Could someone go through a step-by-step. Thanks
First part:
Using: $$h(t)=f^{-1}(t)$$ substituting: $u=f^{-1}(t)$ ->$f(u)=t$-> $df(u)=dt$
$$\int_0^\infty e^{-st}h(t)dt=\\\int_0^\infty e^{-st}f^{-1}(t)dt=\\\int_0^\infty e^{-sf(u)}f^{-1}(f(u))df(u)=\\\int_0^\infty e^{-sf(u)}u df(u)=\\\int_0^\infty te^{-sf(t)}df(t)=?$$