Interested by this problem which ask for the solution of $$f_n(x)=x^x-(x-n)^{x+n}$$ that I rewrote as $$g(x)=x\log(x)-(x+n)\log(x-n)$$ After two series expansions, I obtained, for large $n$, as a very first estimate $$x_n^{(0)}=n+\sqrt n+\frac 14 \log(n)+\frac 12 \tag 1$$ which does not seem to be too bad
$$ \left( \begin{array}{ccc} k & x_{10^k}^{(0)} & x_{10^k} \\ 1 & 14.2379239334 & 15.1346725729 \\ 2 & 111.651292546 & 112.116435031 \\ 3 & 1033.84971542 & 1034.08264064 \\ 4 & 10102.8025851 & 10102.9137478 \\ 5 & 100319.605997 & 100319.656436 \\ 6 & 1001003.95388 & 1001003.97574 \\ 7 & 10003166.8072 & 10003166.8163 \\ 8 & 100010005.105 & 100010005.109 \\\end{array} \right)$$
We have $\forall n$ $$g\big(x_n^{(0)} \big) ~>~ 0 \qquad \qquad g'\big(x_n^{(0)} \big)~<~0 \qquad\qquad g''\big(x_n^{(0)} \big)~> ~0$$ So, by Darboux theorem, we know that this is an underestimate of the solution which, then, will be reached without any overshoot.
Using this estimate, the $\color{red}{\text{first}}$ iterate of Newton-like methods of order $p$ is fully explicit (even if messy). For illustration of the worst case where $n=10$
$$\left( \begin{array}{cc} p & x_{10}^{(1)} & \text{method} \\ 2 & 15.0400117306 & \text{Newton} \\ 3 & 15.1375069522 & \text{Halley} \\ 4 & 15.1343850068 & \text{Householder} \\ 5 & 15.1347106313 & \text{no name} \\ 6 & 15.1346668689 & \text{no name} \\ 7 & 15.1346734910 & \text{no name} \\ 8 & 15.1346724180 & \text{no name} \\ \cdots & \cdots & \\ \infty & 15.1346725729 & \text{solution} \\ \end{array} \right)$$
My question is : what could be the next term(s) in $(1)$ to make it better for small values of $n$ ?
Any idea idea or suggestion would be really welcome. Thanks in advance.
Edit (after @Empy2's answer)
If we compute the first iterate of Newton method and expand it for large values of $n$, we have $$x_n^{(1)}-x_n^{(0)}=\frac {3 \log ^2(n)+8 \log (n)+12 }{32 \sqrt{n} }+O\left(\frac{1}{n}\right)$$
which is exactly what @Empy2 answered.
The good thing is $g\big(x_n^{(1)} \big)$ is still positive.
Repeating the calculations $$ \left( \begin{array}{ccc} k & x_{10^k}^{(1)} & x_{10^k} \\ 1 & 15.0400117306 & 15.1346725729 \\ 2 & 112.106568773 & 112.116435031 \\ 3 & 1034.08180781 & 1034.08264064 \\ 4 & 10102.9136866 & 10102.9137478 \\ 5 & 100319.656432 & 100319.656436 \\ 6 & 1001003.97574 & 1001003.97574 \\ \end{array} \right)$$