4

I've been running in circles and couldn't give a rigorous mathematical proof that the angle is x = 20°.

enter image description here

Any idea? This is my try:

I got the answer $x=20^\circ$ using a computer program: https://www.geogebra.org/classic/qt79hpec

Parcly Taxel
  • 105,904
Ahmed Hossam
  • 1,171

3 Answers3

4

This is a variant of the original Langley's puzzle, which has a straightforward trigonometric solution. Apply the sine rule to the triangles ADE, ADB and BDE

$$\frac{\sin x}{\sin 10}\cdot \frac{\sin 20}{\sin (30+x)}\cdot \frac{\sin 80}{\sin 60} =\frac{DA}{DE}\cdot \frac{DE}{DB}\cdot \frac{DB}{DA} = 1$$

which simplifies to

$$2\cos^210\sin x = \sin60\sin(30+x) =\frac{\sqrt3}4\cos x + \frac{3}4\sin x$$

Solve for $\tan x$,

$$\begin{align} \tan x & = \frac{\sqrt3}{1+4\cos 20} = \frac{\sqrt3\sin 20}{(\sin 20 +\sin 40 )+ \sin40} \\ & = \frac{\sqrt3\sin 20}{2\sin30\cos10 +\sin 40} = \frac{\sqrt3\sin 20}{\sin 80 +\sin 40} = \frac{\sqrt3\sin 20}{\sqrt3\cos 20} =\tan 20 \\ \end{align}$$

Thus, $x = 20$.

Quanto
  • 120,125
2

enter image description here

Construct a line from $A$ that is $60^\circ$ off of $AB$.

It intersects $BC$ at $M$ and $BD$ at $P$

$\triangle ABP$ is equilateral.
$\triangle AMB \cong \triangle BDA$
$\triangle DMP$ is equilateral
$MP \cong DM$

$CP$ bisects $\angle C$

As $\angle MCA = \angle MAC = 20^\circ$ then $\triangle MCA$ is isosceles

$\triangle CMP \cong \triangle AME\\ MP\cong ME\\ DM\cong ME$

$\angle DMC = 80^\circ\\ \angle DEM = 50^\circ\\ \angle AEM = 30^\circ\\ \angle AED = 20^\circ$

Doug M
  • 58,694
-2

The large triangle is isosceles. Let the left base angle be $B.$ Them in the triangle $BCE,$ we find that $B=10°,$ as given, then $C=20°$ (consider the large isosceles triangle). Thus, we have that $C\hat E D=(70+60+20)°=150°.$ Hence we have that $$150+x+10+20=180.$$ This shows us that $x=0,$ or in other words that the configuration is impossible.

Allawonder
  • 13,583
  • According to https://en.wikipedia.org/wiki/Langley%E2%80%99s_Adventitious_Angles the solution was developed by James Mercer in 1923 – Ahmed Hossam Apr 11 '20 at 18:29
  • @AhmedHossam I've assumed that all lines that appear straight are actually straight. Barring that and a correctable error on my part, I believe that the solution is as given. – Allawonder Apr 11 '20 at 18:31
  • https://www.cut-the-knot.org/triangle/80-80-20/IndexToClassical.shtml – Ahmed Hossam Apr 11 '20 at 18:40
  • if you like to provide an answer, you can do so, then I won't delete the question and you can get some points – Ahmed Hossam Apr 11 '20 at 18:56