I want to find angle x in this picture.
And this is what I've done so far. Without loss of generality, assume $\overline{\rm BC}=1$
then, $$\overline{\rm BD}= 2\sin{\frac{x}{2}}$$, $$\overline{\rm BH}= 4\sin^2{\frac{x}{2}}= 2(1-\cos{x}), \quad \overline{\rm CH} = 2\cos{x}-1$$ $$\overline{\rm CE}=\frac{2\cos{x}-1}{\sqrt{2-2\cos{x}}}$$ Let $\overline{\rm DE}=y$,
since $\bigtriangleup DCE = \bigtriangleup HCE$, $$\frac{1}{2}y\sin{50^{\circ}}=\frac{1}{2}\sin{x}\frac{(2\cos{x}-1)^2}{2-2\cos{x}}$$ Then by applying law of cosines to $\bigtriangleup DEC$, $$y^2+1-2y\cos{50^{\circ}}=\frac{(2\cos{x}-1)^2}{2-2\cos{x}}$$ So we have a system of equations $$\begin{cases}y\sin{50^{\circ}}=\sin{x}\frac{(2\cos{x}-1)^2}{2-2\cos{x}}\\y^2+1-2y\cos{50^{\circ}}=\frac{(2\cos{x}-1)^2}{2-2\cos{x}} \end{cases}$$ But it's too messy to solve since 50 is not special angle. How can I solve this problem?





