Let $ABC$ be a triangle such that $\angle ABC=20^\circ$, $AB=BC$. Let $D \in AB$, $E \in BC$, $AD=BE=AC$. Find angle $\angle BDE$. Does this problem have a nice geometric solution?
I don't like my trigonometric solution. Let $AC=b$, $AB=a$, $\angle BDE=x$. From triangle $BDE$ we have: $$\frac{b}{\sin x}=\frac{a-b}{\sin\left(20^\circ+x\right)}$$ Then $\sin20^\circ \cot x+\cos20^\circ=\frac{a}{b}-1$. But $$\frac{a}{b}-1=\frac{\sin80^\circ }{\sin20^\circ}-1=2\cos20^\circ $$



