Suppose $(a,b,c,d)\in \mathbb R^4 $ is nonzero. $ M = \left( {\begin{array}{cc} a & -b & -c &-d \\ b & a & -d & c \\ c &d &a &-b \\ d&-c&b&a \end{array} } \right) $.
Is det$(M)$ non-zero?
Suppose $(a,b,c,d)\in \mathbb R^4 $ is nonzero. $ M = \left( {\begin{array}{cc} a & -b & -c &-d \\ b & a & -d & c \\ c &d &a &-b \\ d&-c&b&a \end{array} } \right) $.
Is det$(M)$ non-zero?
I checked, the way it is typed now agrees with $a (id) + b i + c j + d k$ in https://en.wikipedia.org/wiki/Quaternion#Matrix_representations so the determinant is $$ a^2 + b^2 + c^2 + d^2 $$ and is nonzero if any of the (real) entries is nonzero
The description as SU2, meaning
$$
\left(
\begin{array}{rr}
\alpha & \beta \\
- \bar{\beta} & \bar{\alpha}
\end{array}
\right)
$$
fits with the other (out of 48 possible) set of four matrices on wikipedia,
