Set $B = A^{*}A$. Take $v \in V$ and $w \perp v$. Then
$$ \left<Bv, w \right> = \left<A^{*}Av, w \right> = \left<Av, Aw \right> = 0 $$
which implies that $Bv \perp \operatorname{span} \{ v \}^{\perp}$ and so $Bv \in \operatorname{span} \{ v \}$. That is, each $v \in V$ is an eigenvector of $B$. Show that this implies that $B$ must be a constant multiple of the identity and write $B = \mu I$ for some $\mu \in \mathbb{C}$. Then
$$ \left< Av, Aw \right> = \left<A^{*}Av, w \right> = \left< Bv, w \right> = \left< \mu v, w \right> = \mu \left<v, w \right>.$$
In particular if you take $v = w \neq 0$, you see that $\mu$ must be real and non-negative. If $\mu = 0$, the equation above shows that every two vectors in the image of $A$ are orthogonal and so $\dim \operatorname{Im} A = 0$ and $A = 0$. If $\mu \neq 0$, then set $\lambda = \sqrt{\mu}$ and obtain
$$ \left< \frac{A}{\lambda}v, \frac{A}{\lambda}w \right> = \left<v ,w \right> $$
and so $\frac{A}{\lambda}$ is orthogonal and $A = \lambda \cdot \frac{A}{\lambda}$.
Alternatively, use polar decomposition to write $A = UD$ where $U$ is unitary and $D$ is positive. We want to show that $D = \lambda I$ for some $\lambda \geq 0$. Let $v,w$ be two orthogonal unit-length eigenvectors of $D$ and write $Dv = \mu v$, $Dw = \nu w$ with $\mu, \nu \geq 0$. Then
$$ \left< v + w, v - w \right> = \left< v, v \right> - \left< v, w \right> + \left< w, v \right> - \left< w, w \right> = 1 - 1 = 0 \implies \\
\left< A(v + w), A(v - w) \right> = \left< Av, Av \right> - \left< Av, Aw \right> + \left< Aw, Av \right> - \left< Aw, Aw \right> = \\ \left< (UD)v, (UD)v \right> - \left< (UD)w, (UD)w \right> = \left< Dv, Dv \right> - \left< Dw, Dw \right> = \mu^2 - \nu^2 = 0
$$
and so $\mu = \nu$. This shows that all the eigenvalues of $D$ must be the same and so $D = \lambda I$ for some $\lambda \geq 0$.