If $T:\mathbb{R^2}\to \mathbb{R^2}$ is a linear transformation such that $\langle x,y \rangle =0 \implies \langle T(x),T(y) \rangle =0 $ for each $x,y \in \mathbb{R^2} $, show that $T=aS$ ,where $S:\mathbb{R^2}\to \mathbb{R^2}$,is an orthogonal transformation.
My attempt.
Instead of showing $T$ orthogonal I have decided to show $S=\frac{1}{a}T$ orthogonal.
For this we need to show that $\langle S(x),S(x) \rangle = \langle x,x \rangle $ .So I let $x=x_1e_1+x_2e_2$.But I am unable to get rid of $a$.Is my approach right?