As commented, $A=0$ is a counterexample. If $A\ne0$ there exists $\lambda$ such that if $B=\lambda A$ then $$Bx\cdot By=x\cdot y$$for all $x,y$. That says $B$ is unitary, at least in the finite-dimensional case. (The right shift on $\ell^2(\Bbb N)$ is a counterexample in the infinite-dimensional case, if we're careful about the definition of "unitary"; if we assume as well that $A$ is surjective then $B$ is unitary.)
Suppose $||x||=||y||=1$. Then $$y=(x\cdot y)x+(y-(x\cdot y)x)=z+w.$$
Now $x\cdot w=0$, hence $Ax\cdot Aw=0$. Multiplying this out shows that $$Ax\cdot Ay=(x\cdot y)||Ax||^2.$$ Similarly $$Ax\cdot Ay=(x\cdot y)||Ay||^2.$$
So far we've shown this: If $||x||=||y||=1$ and $x\cdot y\ne0$ then $||Ax||=||Ay||$.
But for any $x,y$ with $||x||=||y||=1$ there exists $z$ such that $x\cdot z\ne 0$ and $y\cdot z\ne 0$. So in fact $||Ax||=||Ay||$ whnever $||x||=||y||=1$. If $A\ne0$ this shows that there exists $\lambda$ so that if $B=\lambda A$ then $||Bx||=||x||$ for all $x$.
Hence $Bx\cdot By=x\cdot y$ for all $x,y$.