Let $A$ be a rank-one perturbation of a diagonal matrix, i. e. $A = D + s^T s$, where $D = \DeclareMathOperator{diag}{diag} \diag\{\lambda_1,\ldots,\lambda_n\}$, $s = [s_1,\ldots,s_n] \neq 0$. Is there a way to easily compute its determinant?
One the one hand, $s^Ts$ has rank one so that it has only one non-zero eigenvalue which is equal to its trace $|s|^2 = s_1^2+\cdots+s_n^2$. On the other hand, if $D$ was a scalar operator (i.e. all $\lambda_i$'s were equal) then all eigenvalues of $A$ would be shifts of the eigenvalues of $s^T s$ by $\lambda$. Thus one eigenvalue would be equal to $\lambda+|s|^2$ and the others to $\lambda$. Hence in this case we would obtain $\det A = \lambda^{n-1} (\lambda+|s|^2)$. But is it possible to generalize these considerations to the case of diagonal non-scalar $D$?