To expand on darij grinberg's comment, let
$$
X=A-I_n = \begin{bmatrix}
x_1^2 &x_1x_2 & ... & x_1x_n \\
x_2x_1&x_2^2 &... & x_2x_n\\
...& ... & ... &... \\
x_nx_1& x_nx_2 &... & x_n^2
\end{bmatrix}=(x_ix_j)_{1\leq i,j\leq n}
$$
Then all the lines of $X$ are multiples of $(x_1,x_2,\ldots,x_n)$ ; so
${\textsf{rank}}(X)\leq 1$. The eigenvalues of $X$ (counted with multiplicity)
are therefore $0,0,\ldots,0$ ($n-1$ times), plus some $\lambda\in{\mathbb R}$.
Since the trace of $X$ equals the sum of its eigenvalues, we must have $\lambda={\textsf{trace}}(X)=\sum_{i=1}^n x_i^2$. Then
$X$ is similar to a triangular matrix with diagonal ${\textsf{diag}}(0,0,0,\ldots, 0,\sum_{i=1}^n x_i^2)$, so that
$A$ is similar to a triangular matrix with diagonal ${\textsf{diag}}(1,1,1,\ldots, 1,1+\sum_{i=1}^n x_i^2)$, whence
$$
{\textsf{det}}(A)=1+\sum_{i=1}^n x_i^2
$$