Here is a solution using 'elementary manipulations' such as completing the squares and AM-GM.
This trick works for some problems involving multiple constraints, e.g. this question.
First, we hope to find the constants $M, s$ such that
$M - (x + 2y + 3z) + s(x^2 + y^2 + z^2 - 1)$ is a sum of squares (note that it is quadratic in $x, y, z$; we complete the squares in $x, y, z$, respectively).
By completing the squares, we have
\begin{align*}
&M - (x + 2y + 3z) + s(x^2 + y^2 + z^2 - 1)\\
={}& s\left(x - \frac{1}{2s}\right)^2 + s\left(y - \frac{1}{s}\right)^2 + s\left(z - \frac{3}{2s}\right)^2 + M - s - \frac{7}{2s}
\end{align*}
Note that $s + \frac{7}{2s} \ge 2\sqrt{s \cdot \frac{7}{2s}} = \sqrt{14}$ by AM-GM.
Thus, if we choose $s = \frac12\sqrt{14}$ and $M = \sqrt{14}$,
then $M - (x + 2y + 3z) + s(x^2 + y^2 + z^2 - 1)$ is a sum of squares, i.e.
\begin{align*}
&\sqrt{14} - (x + 2y + 3z) + \frac12\sqrt{14}(x^2 + y^2 + z^2 - 1)\\
={}& \frac12\sqrt{14}\left(x - \frac{\sqrt{14}}{14}\right)^2 + \frac12\sqrt{14}\left(y - \frac{\sqrt{14}}{7}\right)^2 + \frac12\sqrt{14}\left(z - \frac{3\sqrt{14}}{14}\right)^2. \tag{1}
\end{align*}
Thus, we have $x + 2y + 3z \le \sqrt{14}$ if $x^2 + y^2 + z^2 = 1$.
Second, from (1), we have $x + 2y + 3z = \sqrt{14}$
if $x = \frac{\sqrt{14}}{14}, y = \frac{\sqrt{14}}{7}, z = \frac{3\sqrt{14}}{14}$ which satisfies $x^2 + y^2 + z^2 = 1$.
Thus, the maximum of $x + 2y + 3z$ subject to $x^2 + y^2 + z^2 = 1$ is $\sqrt{14}$ when $x = \frac{\sqrt{14}}{14}, y = \frac{\sqrt{14}}{7}, z = \frac{3\sqrt{14}}{14}$.