
In picture J is midpoint of $arc AB=2\times 84=168^o$, so we have:
$\angle AJB=96^o$
$\angle AJF=24^o\Rightarrow \angle FJB=72^o$
Triangle AJB is isosceles so:
$\angle JBA=42^o$
$\angle JFB=42^o\Rightarrow BC||JF \Rightarrow arc JB=arc FC\Rightarrow \angle FJC=\angle JCB=42^o$
$\Rightarrow \angle CJB=72-42=30^o\Rightarrow \angle BAC=30^o$
Which finally gives:
$\angle CBD=42^o$
We may also use the $BC=AD$

As shown in picture we connect M to L , so the perpendicular bisector of LM is the diameter of circumcircle , it meets the circle at P , so:
$\angle ACP=90^o\Rightarrow \angle BCP=90-84=6^o\Rightarrow arc BP=12^o $
So the auxiliary circle center on A and radius R passes through the center of the circumcircle and so their radii are equal. This means:
$PL||BF\Rightarrow arc FL=arc BP=12^o$
$arc AF=49^o\Rightarrow arc AL=49+12=60^o$
This implies that $AD=BC=AL=R$ the radius of the circumcircle , so $arc BC=60^o\Rightarrow \angle BAC=30^o$
Finally:
$\angle ABC= 180-(30+84)=66^o\Rightarrow x=CBD=66-24=42^o$