The way to solve this is using the Vectorization Operator.
Using the operator:
$$ \boldsymbol{X} \boldsymbol{a} \leq \boldsymbol{b} \iff \operatorname{Vec} \left( \boldsymbol{X} \boldsymbol{a} \right) \leq \operatorname{Vec} \left( \boldsymbol{b} \right) = \boldsymbol{b} $$
By the identity of the operator:
$$ \operatorname{Vec} \left( \boldsymbol{X} \boldsymbol{a} \right) = \left( \boldsymbol{a}^{T} \otimes \boldsymbol{I}_{m} \right) \operatorname{Vec} \left( \boldsymbol{X} \right) $$
Where $\otimes$ is the Kronecker Product and $\boldsymbol{I}_{m}$ is the $m \times m$ identity matrix.
By setting $\boldsymbol{A} = \boldsymbol{a}^{T} \otimes \boldsymbol{I}_{m} $ and $\boldsymbol{x} = \operatorname{Vec} \left( \boldsymbol{X} \right)$ the problem becomes:
$$
\begin{align}
\arg \min_{\boldsymbol{x}} \quad & \frac{1}{2} {\left\| \boldsymbol{x} - \boldsymbol{y} \right\|}_{2}^{2} \\
\text{subject to} \quad & \begin{aligned}
\boldsymbol{A} \boldsymbol{x} & \leq \boldsymbol{b} \\
\end{aligned}
\end{align}
$$
Which is equivalent to Orthogonal Projection onto a Polyhedron (Matrix Inequality).