How to find the projection(the closest point) of point $a$ to half-space $(p,x)\le\alpha$, where $p,x\in\mathbb R^n$,$\alpha \in \mathbb R$? $(p,x)$ is dot product.
Asked
Active
Viewed 4,083 times
2
-
What is $(p,x)$ for you? – Sigur Mar 02 '13 at 17:04
-
2$(p,x)=constant$ is a plane. If you set $(p,x)\leq constant$, you're making infinite planes, not half a plane – MyUserIsThis Mar 02 '13 at 17:19
2 Answers
4
The problem is given by:
$$\begin{aligned} \arg \min_{x} \quad & \frac{1}{2} {\left\| x - y \right\|}_{2}^{2} \\ \text{subject to} \quad & {a}^{T} x \leq b \end{aligned}$$
Solving the KKT conditionn will yield:
$$ x = \begin{cases} y & \text{ if } \; {a}^{T} y \leq b \\ y - \frac{{a}^{T} y - b}{ {\left\| a \right\|}_{2}^{2} } a & \text{ if } \; {a}^{T} y > b \end{cases} $$
A MATLAB Code is given in my answer to Orthogonal Projection onto the Intersection of Convex Sets.
Royi
- 10,050
2
1) Find a normal vector $\vec \nu$ to the hyperplane $\mathrm H = \{x|p.x = \alpha\}$ ;
2) Calculate the distance $d$ between $a$ and $\rm H$ ;
3) Then, then point you want is $a - d \vec \nu$.
Damien L
- 6,833