Here is another method for performing the sum. We take $\Re (\mu)$ to not be an integer and take $\theta$ to not be equal to $k2 \pi$ for $k \in \mathbb{Z}$.
First we take $0 < \Re (\mu) < 1$. For later convenience, note $\theta= 2 \pi (\frac{\theta}{2 \pi}) = 2 \pi (\lfloor \frac{\theta}{2 \pi} \rfloor + \{ \frac{\theta}{2 \pi} \})$ where $\lfloor \cdots \rfloor$ is the floor function and $\{ \frac{\theta}{2 \pi} \}$ is the fractional part of $\frac{\theta}{2 \pi}$.
We have
\begin{align*}
& \sum_{n=-\infty}^\infty \frac{e^{i n \theta}}{\mu + n}
\nonumber \\
& = \frac{1}{\mu} + \sum_{n=1}^\infty \frac{e^{i n \theta}}{\mu + n} - \sum_{n=1}^\infty \frac{e^{-i n \theta}}{-\mu + n}
\nonumber \\
& = \frac{1}{\mu} + \sum_{n=1}^\infty \frac{e^{i n \theta}}{\mu + n} \int_0^\infty e^{-u} du - \sum_{n=1}^\infty \frac{e^{-i n \theta}}{-\mu + n} \int_0^\infty e^{-u} du
\nonumber \\
& = \frac{1}{\mu} + \sum_{n=1}^\infty \int_0^\infty e^{-u (n+\mu) + in \theta} du - \sum_{n=1}^\infty \int_0^\infty e^{-u (n -\mu) - in \theta} du
\nonumber \\
& = \frac{1}{\mu} + \int_0^\infty \sum_{n=1}^\infty e^{-n (u - i \theta)} e^{-u \mu} du - \int_0^\infty \sum_{n=1}^\infty e^{-n (u+ i\theta)} e^{u \mu} du
\nonumber \\
& = \frac{1}{\mu} + \int_0^\infty \frac{e^{-u \mu}}{e^{u - i \theta} - 1} du - \int_0^\infty \frac{e^{u \mu}}{e^{u + i \theta} - 1} du
\nonumber \\
& = \frac{1}{\mu} + \left[ - \frac{1}{\mu} \frac{e^{-u \mu}}{e^{u - i \theta} - 1} \right]_0^\infty - \frac{1}{\mu} \int_0^\infty \frac{e^{-u \mu} e^{u - i \theta}}{(e^{u - i \theta} - 1)^2} du - \left[ \frac{1}{\mu} \frac{e^{u \mu}}{e^{u + i \theta} - 1} \right]_0^\infty - \frac{1}{\mu} \int_0^\infty \frac{e^{u \mu} e^{u + i \theta}}{(e^{u + i \theta} - 1)^2} du
\nonumber \\
& = \frac{1}{\mu} + \frac{1}{\mu} \frac{1}{e^{- i \theta} - 1} + \frac{1}{\mu} \frac{1}{e^{i \theta} - 1} - \frac{1}{\mu} \int_0^\infty \frac{e^{-u \mu} e^{u + i \theta}}{(e^u - e^{i \theta})^2} du - \frac{1}{\mu} \int_0^\infty \frac{e^{u \mu} e^{u - i \theta}}{(e^u - e^{-i \theta})^2} du
\nonumber \\
& = - \frac{1}{\mu} \int_{-\infty}^\infty \frac{e^{-u \mu} e^u e^{i \theta}}{(e^u - e^{i \theta})^2} du
\end{align*}
where we have done an integration by parts and the substitution $u \rightarrow - u$ in the second integral in the second to last line (strictly, you need to justify the step where a summation and integration were interchanged). Consider the rectangular contour in the figure

and contour integral:
\begin{align*}
\oint \frac{e^{-z \mu} e^z e^{i \theta}}{(e^z - e^{i \theta})^2} dz
\end{align*}
The whose integrand has pole at $i 2 \pi \{ \frac{\theta}{2 \pi} \}$. The integral along the vertical edges vanishes as:
\begin{align*}
f(z) = \dfrac{e^{(-\mu+1) (u+iv)} e^{i \theta}}{(e^{u+iv} + e^{i \theta})^2} =
\begin{cases}
e^{i \theta} e^{(-\mu - 1) (u+iv)} & u \rightarrow \infty \\
e^{-i \theta} e^{(-\mu+1) (u+iv)} & u \rightarrow - \infty \\
\end{cases}
\end{align*}
So that
\begin{align*}
& e^{i \theta} \oint_C \dfrac{e^{-\mu z}}{(e^z - e^{i \theta})^2}dz
\nonumber \\
& = e^{i \theta} \int_{-\infty}^\infty \dfrac{e^{-\mu u}}{(e^u - e^{i \theta})^2} du - e^{i \theta} e^{- \mu 2 \pi i} \int_{-\infty + 2 \pi i}^{\infty + 2 \pi i} \dfrac{e^{- \mu u}}{(e^u - e^{i \theta})^2} du
\nonumber \\
& = (1-e^{-\mu 2 \pi i}) e^{i \theta} \int_{-\infty}^\infty \dfrac{e^{-\mu u}}{(e^u - e^{i \theta})^2} du
\end{align*}
We arrive a
\begin{align*}
\int_{-\infty}^\infty \dfrac{e^{i \theta} e^{-\mu u} e^u}{(e^u - e^{i \theta})^2} du & = \frac{2 \pi i }{1-e^{-\mu 2 \pi i}} \frac{1}{2 \pi i} \oint_C \dfrac{e^{i \theta} e^{-\mu z} e^z}{(e^z - e^{i 2 \pi \{ \frac{\theta}{2 \pi} \}})^2} dz
\nonumber \\
& = \frac{2 \pi i}{1-e^{-\mu 2 \pi i}} Res [f(z)]
\end{align*}
We wish to expand the integrand in powers of $z-z_0$ about the pole $z_0= i 2 \pi \{ \frac{\theta}{2 \pi} \}$. First note:
\begin{align*}
\frac{1}{(e^z - e^{z_0})^2} & = \frac{e^{-2 z_0}}{(e^{z-z_0} - 1)^2}
\nonumber \\
& = \frac{e^{-2 z_0}}{[z-z_0 + \frac{1}{2!} (z-z_0)^2 + \cdots]^2}
\nonumber \\
& = \frac{e^{-2 z_0}}{(z-z_0)^2 [1 + \frac{1}{2!} (z-z_0) + \cdots]^2}
\nonumber \\
& = \dfrac{e^{-2z_0}}{(z-z_0)^2} - \dfrac{e^{-2z_0}}{z-z_0} + \cdots
\end{align*}
Then note:
\begin{align*}
\dfrac{e^{z_0} e^{-\mu z} e^z}{(e^z - e^{z_0})^2} & = e^{-z_0} \dfrac{ e^{(-\mu + 1) z_0 + (-\mu + 1) (z-z_0)} }{ (z-z_0)^2 } - e^{-z_0} \dfrac{ e^{(-\mu + 1) z_0} }{ z-z_0 } + \cdots
\nonumber \\
& = e^{-z_0} \dfrac{ e^{(-\mu + 1) z_0} [1 + (-\mu + 1) (z-z_0) + \cdots] }{ (z-z_0)^2 } - e^{-z_0} \dfrac{ e^{(-\mu + 1) z_0} }{ z-z_0 } + \cdots
\nonumber \\
& = \dfrac{ e^{-\mu z_0} }{ (z-z_0)^2 } + \dfrac{ -\mu e^{-\mu z_0} }{ z-z_0 } + \cdots
\end{align*}
Combining everything
\begin{align*}
\int_{-\infty}^\infty \dfrac{e^{i \theta} e^{-\mu u}}{(e^u - e^{i \theta})^2} du & = \pi \frac{2i}{1-e^{-\mu 2 \pi i}} \cdot -\mu e^{-\mu i 2 \pi \{ \frac{\theta}{2 \pi} \}}
\nonumber \\
& = - e^{-\mu i 2 \pi \{ \frac{\theta}{2 \pi} \} + \mu \pi i} \dfrac{\mu \pi}{\sin \mu \pi}
\end{align*}
Finally, for the case where $0 < \Re (\mu) < 1$, we have
\begin{align*}
\sum_{n=-\infty}^\infty \frac{e^{i n \theta}}{\mu + n} = e^{-\mu i 2 \pi \{ \frac{\theta}{2 \pi} \} + \mu \pi i} \dfrac{\pi}{\sin \mu \pi}
\end{align*}
Now consider the general case where $\mu = m + \{ \mu_R \} + i \mu_I$ with $0 < \{ \mu_R \} < 1$. Then
\begin{align*}
\sum_{n=-\infty}^\infty \frac{e^{i n \theta}}{\mu + n} & = \sum_{n=-\infty}^\infty \frac{e^{i n \theta}}{\{ \mu_R \} + m + i \mu_I + n}
\nonumber \\
& = e^{-i m \theta} \sum_{n=-\infty}^\infty \frac{e^{i (n+m) \theta}}{\{ \mu_R \} + i \mu_I + (m+n)}
\nonumber \\
& = e^{-i m 2 \pi \{ \frac{\theta}{2 \pi} \}} \sum_{n=-\infty}^\infty \frac{e^{i n \theta}}{\{ \mu_R \} + i \mu_I + n}
\nonumber \\
& = e^{-i m 2 \pi \{ \frac{\theta}{2 \pi} \}} e^{-(\{ \mu_R \} + i\mu_I) i 2 \pi \{ \frac{\theta}{2 \pi} \} + (\{ \mu_R \} + i\mu_I) \pi i} \dfrac{\pi}{\sin (\{ \mu_R \} + i\mu_I) \pi}
\nonumber \\
& = (-1)^m e^{-\mu i 2 \pi \{ \frac{\theta}{2 \pi} \} + \mu \pi i} \dfrac{\pi}{\sin (\{ \mu_R \} + i\mu_I) \pi}
\nonumber \\
& = e^{-\mu i 2 \pi \{ \frac{\theta}{2 \pi} \} + \mu \pi i} \dfrac{\pi}{\sin \mu \pi}
\end{align*}
where I have used the trig identity $\sin (-m \pi + \mu \pi) = \cos (-m \pi) \sin \mu \pi = (-1)^m \sin \mu \pi$.
Check: taking the derivative with respect to $\theta$ ($\theta \not=k 2\pi$):
\begin{align*}
\frac{d}{d \theta} \sum_{n=-\infty}^\infty \frac{e^{i n \theta}}{\mu + n} = \frac{d}{d \theta} f(\theta) = -i \mu e^{-\mu i 2 \pi \{ \frac{\theta}{2 \pi} \} + \mu \pi i} \dfrac{\pi}{\sin \mu \pi} = -i \mu f(\theta)
\end{align*}