1

If one consider the complex value function $$ f(z)=\frac{1}{\sqrt{z-1}\sqrt{z-2}} $$ with branch cut chosen to be between $z=1$ and $z=2$. Could someone please explain why $$ 2\int_1^2 f(x)dx=\oint f(z) dz, $$ where the contour is taken to be a circle in the complex plane that contains $z=1,2$. I am not interested in the explicit formulas. I am interested into why this is true. Because this is a toy example of my integrals and I want to understand how I can turn my integrals into line integrals in the complex plane.

Using @J.G.'s suggestion, I try a sausage around the two points. Let's just worry about the top and lower part. The top part is parametrized by $z=t+\epsilon i$, $t=1...2$ and the integral on that part becomes $$ \int_1^2\frac{dt}{\sqrt{(t-1)+\epsilon i} \sqrt{(t-2)+\epsilon i}}. $$ Parametrizing the bottom part by $z=t-\epsilon i$, $t=2...1$, the integral on that part becomes $$ \int_2^1\frac{dt}{\sqrt{(t-1)-\epsilon i} \sqrt{(t-2)-\epsilon i}}. $$ But these integrals "cancel" and I do not see how they add up. Can anyone see the error of my ways?

Again, following @J.G. comments, for $f$ to have its branch cut between $z=1$ and $z=2$, we choose the branch cuts of the square roots to be $(1,\infty)$ and $(2,\infty)$, thus the two shifts cancel each other when getting through the right rounded part of the sausage. So, I do not see any minus sign coming from going "under" the sausage.

  • 1
    Hint: deform the contour to wrap tightly around the line segment joining the poles, then justify why the two long parts each contribute the same value. It involves a surd-induced $e^{\pm i\pi}$ factor, without which they would cancel instead. – J.G. Jul 16 '24 at 23:12
  • Thank you. I will work the contour out. – Gateau au fromage Jul 17 '24 at 00:50
  • I added something to my question in line with your suggestion. – Gateau au fromage Jul 17 '24 at 16:02
  • Thanks for your edit. Your confusion stems from not thinking carefully enough about what $\frac{1}{\sqrt{w}}=\exp(-\frac12\log w)$ means. The logarithm picks up a phase shift around one end of the sausage. – J.G. Jul 17 '24 at 16:35
  • Thank you so much for taking the time to respond. Here is my understanding. The two branch cuts are $(1,\infty)$ and $(2,\infty)$. Thus when going to the "round part" on the right, the two square roots pick up a phase shift, cancelling each other. Again, just trying to understand my error. – Gateau au fromage Jul 17 '24 at 16:39
  • I suggest reading something about dogbone contours, e.g. this similar question. – J.G. Jul 17 '24 at 19:51
  • Thank you. That question was very useful to me. – Gateau au fromage Jul 28 '24 at 01:31

1 Answers1

1

I believe your confusion stems from not understanding how exponentials, logarithms, and arguments come into play here. In this answer, we'll refresh ourselves with some basics and dive into the main problem after.


PRIMER

The definition of complex exponentiation $z^\alpha$, where $\alpha \in \mathbb{C}$, is $$ z^\alpha = \exp(\alpha \log z)\,. $$ In turn, the definition of $\log z$ is a multivalued function defined as $$ \log z = \ln |z| + i \arg z\,, $$ where $\arg z$ is the argument of a complex number $z$, defined as the angle between the positive real axis and the line joining the origin. To avoid multivalued functions for $z^\alpha$, we choose an interval for $\arg z$. We may specify some initial angle $\theta_0 \in \mathbb{R}$ and make $\arg z$ live in the interval $(\theta_0, \theta_0 + 2\pi)$.

Knowing these, we have the following equality:

$$ z^\alpha = \exp(\alpha \log z) = \exp(\alpha \ln|z| + i \alpha \arg z) = |z|^\alpha \exp(i \alpha \arg z)\,. \tag{1} $$

See here for more details.

For example, the following equality holds when $a > 0$ and $\arg(-a) \in (-\pi,\pi]$:

$$ \sqrt{-a} = i \sqrt{a}\,. \tag{2} $$

The equalities $(1)$ and $(2)$ will be useful later.


EXERCISE

Foreword: In the following proof, I will assume we are dealing with the principal branch of the logarithm. The proof could work for the branch cuts described in the comments above, but I didn't check. Also, I'll assume the contour travels clockwise. Even though these assumptions aren't stated in the original post, I hope this proof will be enough to answer your question.

Define the holomorphic function $f: \mathbb{C} \setminus [1,2] \to \mathbb{C}$ where $\displaystyle f(z) = \frac{1}{\sqrt{z-1}\sqrt{z-2}}$. Here, we further define $\operatorname{Arg}(z-1),\operatorname{Arg}(z-2) \in (-\pi,\pi]$. Let $\mathcal{C}$ be a circle traveling clockwise that contains the branch points $z=1$ and $z=2$. We will prove

$$ 2\int_1^2 f(x)dx = \oint_{\mathcal{C}}f(z)dz\,. $$


PROOF

We deform $\mathcal{C}$ using the principle of contour deformation from a circle to the shape of a dumbbell/dogbone/sausage depicted below.

$$ \text{Figure 1: Dumbbell Contour $\mathcal{C}$ Traveling Clockwise} $$

Dumbbell Contour

Let $0 < \delta < r < \frac{1}{2}$ where $\delta$ is the distance between the real axis and either $\lambda_1$ or $\lambda_2$ and $r$ is the radius of $\psi_1$ and $\psi_2$. Let $\epsilon = \sqrt{r^2 - \delta^2}$. Using geometry, we can formally express $\mathcal{C}$ as the union of the four contours:

$$ \begin{align} \lambda_1 &= \left\{t+i\delta : t \in [1+\epsilon, 2-\epsilon]\right\} \\ \psi_1 &= \left\{2+re^{-it}: t \in \left[-\pi + \arctan\left(\frac{\delta}{\epsilon}\right), \pi + \arctan\left(\frac{\delta}{\epsilon}\right)\right]\right\} \\ \lambda_2 &= \left\{-t-i\delta: t \in [\epsilon-2,-1-\epsilon]\right\} \\ \psi_2 &= \left\{1+re^{-it}: t \in \left[\arctan\left(\frac{\delta}{\epsilon} \right), 2\pi - \arctan\left(\frac{\delta}{\epsilon} \right)\right]\right\}\,. \end{align} $$

In a similar example here, I used a similar process to construct a contour using geometry. If you want to verify that these constructions don't have any typos, I put them here in Desmos.

We integrate over the four contours and get

$$ \oint_{\mathcal{C}}f(z)dz = \int_{\lambda_1}f(z)dz + \int_{\psi_1}f(z)dz + \int_{\lambda_2}f(z)dz + \int_{\psi_2}f(z)dz\,. \\ $$

Applying the iterated limits $\displaystyle \lim_{r \to 0^+}\lim_{\delta \to 0^+}$ on both sides of the equality, we get

$$ \lim_{r \to 0^+}\lim_{\delta \to 0^+}\oint_{\mathcal{C}}f(z)dz = \lim_{r \to 0^+}\lim_{\delta \to 0^+}\left(\int_{\lambda_1}f(z)dz + \int_{\psi_1}f(z)dz + \int_{\lambda_2}f(z)dz + \int_{\psi_2}f(z)dz\right)\,. $$

From the equality with the iterated limits, we call the first integral $I_1$. We will prove

$$ \lim_{r \to 0^+}\lim_{\delta \to 0^+}\int_{\lambda_1}f(z)dz = \int_1^2 f(x)dx\,. $$

Proof 1. Note that $\operatorname{Arg}(z-1),\operatorname{Arg}(z-2) \in (-\pi,\color{blue}{\pi}]$. We use the parameterization $z = t + i\delta$, for $1+\epsilon \leq t \leq 2-\epsilon$, to get

$$ \begin{align} I_1 &= \lim_{r \to 0^+}\lim_{\delta \to 0^+}\int_{\lambda_1}f(z)dz \\ &= \lim_{r \to 0^+}\lim_{\delta \to 0^+} \int_{1+\epsilon}^{2-\epsilon} \frac{1}{\sqrt{t+i\delta-1}\sqrt{t+i\delta-2}}dt \\ &= \lim_{r \to 0^+}\lim_{\delta \to 0^+} \int_{1+\epsilon}^{2-\epsilon} \frac{1}{\sqrt{|t+i\delta-1|}\exp\left(\frac{i}{2}\operatorname{Arg}(t+i\delta-1)\right)\sqrt{|t+i\delta-2|}\exp\left(\frac{i}{2}\operatorname{Arg}(t+i\delta-2)\right)}dt\tag{1}\\ &= \lim_{r \to 0^+}\int_{1+\sqrt{r^{2}-0^{2}}}^{2-\sqrt{r^{2}-0^{2}}}\frac{1}{\sqrt{\left|t+i\left(0\right)-1\right|}\exp\left(\frac{i}{2}\cdot\color{green}{0}\right)\sqrt{\left|t+i\left(0\right)-2\right|}\exp\left(\frac{i}{2}\cdot\color{blue}{\pi}\right)}dt \\ &= \int_{1}^{2}\frac{1}{\sqrt{t-1}\sqrt{2-t}i}dt \tag{2}\\ &= \int_{1}^{2}\frac{1}{\sqrt{t-1}\sqrt{t-2}}dt \\ &= \int_1^2 f(x)dx\,. \\ \end{align} $$

This concludes the first proof. $\square$

From the equality with the iterated limits, we call the second integral $I_2$. We will prove

$$ \lim_{r \to 0^+}\lim_{\delta \to 0^+}\int_{\lambda_2}f(z)dz = \int_1^2 f(x)dx\,. $$

Proof 2. Note that $\operatorname{Arg}(z-1),\operatorname{Arg}(z-2) \in (\color{red}{-\pi},\pi]$. We use the parameterization $z = -t -i \delta$, for $\epsilon - 2 \leq t \leq -1-\epsilon$, to get

$$ \begin{align} I_3 &= \lim_{r \to 0^+}\lim_{\delta \to 0^+}\int_{\lambda_2}f(z)dz \\ &= -\lim_{r \to 0^+}\lim_{\delta \to 0^+} \int_{\epsilon-2}^{-1-\epsilon} \frac{1}{\sqrt{-t -i \delta-1}\sqrt{-t -i \delta-2}}dt \\ \overset{-t=x}=& \lim_{r \to 0^+}\lim_{\delta \to 0^+}\int_{2-\epsilon}^{1+\epsilon} \frac{1}{\sqrt{x-i\delta-1}\sqrt{x-i\delta-2}}dx \\ &= \lim_{r \to 0^+}\lim_{\delta \to 0^+}\int_{2-\epsilon}^{1+\epsilon}\frac{1}{\sqrt{|x-i\delta-1|}\exp\left(\frac{i}{2}\operatorname{Arg}(x-i\delta-1)\right)\sqrt{|x-i\delta-2|}\exp\left(\frac{i}{2}\operatorname{Arg}(x-i\delta-2)\right)}\\ \tag{1} &= \lim_{r \to 0^+}\int_{2-\sqrt{r^{2}-0^{2}}}^{1+\sqrt{r^{2}-0^{2}}}\frac{1}{\sqrt{\left|x-i\left(0\right)-1\right|}\exp\left(\frac{i}{2}\left(\color{green}{0}\right)\right)\sqrt{\left|x-i\left(0\right)-2\right|}\exp\left(\frac{i}{2}\left(\color{red}{-\pi}\right)\right)}dx \\ &= \int_{2}^{1}\frac{1}{\sqrt{x-1}\sqrt{2-x}\left(-i\right)}dx \\ &= \int_{1}^{2}\frac{1}{\sqrt{x-1}\sqrt{x-2}}dx \tag{2}\\ &= \int_{1}^{2}f(x)dx\,. \\ \end{align} $$

This concludes the second proof. $\square$

The small circular contour integrals are a lot easier to calculate. For the contour on the left, we use the parameterization $z = 1+re^{-it}$, for $\arctan\left(\frac{\delta}{\epsilon}\right) \leq t \leq 2\pi - \arctan\left(\frac{\delta}{\epsilon}\right)$, to get

$$ \lim_{\delta \to 0^+} \int_{\psi_2} f(z)dz = \int_{0}^{2\pi}\frac{-rie^{-it}}{\sqrt{1+re^{-it}-1}\sqrt{1+re^{-it}-2}}dt = -i\sqrt{r}\int_{0}^{2\pi}\frac{e^{-it}}{\sqrt{e^{-it}}\sqrt{re^{-it}-1}}dt \overset{r \to 0^+}\to 0\,. $$

A similar proof follows for the integral over the right contour:

$$\lim_{\delta \to 0^+} \int_{\psi_1} f(z)dz \overset{r \to 0^+}\to 0\,.$$

Going back to $\mathcal{C}$, we have

$$ \require{cancel} \oint_{\mathcal{C}}f(z)dz = \int_1^2 f(x)dx + \cancelto{0}{\lim_{r \to 0^+}\lim_{\delta \to 0^+} \int_{\psi_1} f(z)dz} + \int_1^2 f(x)dx + \cancelto{0}{\lim_{r \to 0^+}\lim_{\delta \to 0^+}\int_{\psi_2}f(z)dz}\,. $$

Finally, we conclude

$$ \bbox[15px,border:5px inset #878787]{2\int_1^2 f(x)dx = \oint_{\mathcal{C}}f(z)dz} $$

and we're finished! $\blacksquare$


Accelerator
  • 6,203