Let $u=(1+x^2)/2$, so that $du=x\,dx=\sqrt{2u-1}\,dx$. It follows that
$${n\over2^n}\int_0^1(1+x^2)^n\,dx=n\int_{1/2}^1{u^n\over\sqrt{2u-1}}\,du=n\int_{1/2}^1u^n\,du+n\int_{1/2}^1u^n\left({1\over\sqrt{2u-1}}-1\right)\,du$$
Now
$$n\int_{1/2}^1u^n\,du={n\over n+1}\left(1-\left(1\over2\right)^{n+1}\right)\to1(1-0)=1$$
So it remains to show that
$$n\int_{1/2}^1u^n\left({1\over\sqrt{2u-1}}-1\right)\,du\to0$$
Note that
$$0\le{1\over\sqrt{2u-1}}-1={1-\sqrt{2u-1}\over\sqrt{2u-1}}={2(1-u)\over\sqrt{2u-1}(1+\sqrt{2u-1})}\le{1-u\over\sqrt{2u-1}}$$
so it's enough to show that
$$n\int_{1/2}^1{u^n(1-u)\over\sqrt{2u-1}}\,du\to0$$
It's convenient to let $u=1-v$ and, taking $n=N^3$ to be sufficiently large, rewrite the integral as
$$\begin{align}
N^3\int_0^{1/2}{v(1-v)^{N^3}\,dv\over\sqrt{1-2v}}
&=N^3\int_0^{1/N^2}{v(1-v)^{N^3}\,dv\over\sqrt{1-2v}}
+N^3\int_{1/N^2}^{1/2}{v(1-v)^{N^3}\,dv\over\sqrt{1-2v}}\\
&\le{N^3\over\sqrt{1-1/N^2}}\int_0^{1/N^2}v\,dv+{N^3\over2}\left(1-{1\over N^2}\right)^{N^3}\int_0^{1/2}{dv\over\sqrt{1-2v}}\\
&={1\over2N\sqrt{1-2/N^2}}+{N^3\over2}\left(\left(1-{1\over N^2}\right)^{N^2} \right)^N\\
&\le{1\over N}+N^3(e^{-1/2})^N\\
&\to0+0=0
\end{align}$$
(Note, these calculations do not require $n$ to be an integer.)