$${I = \int_0^{\frac{\pi}{4}}\operatorname{Li}_3(\tan^4(x)) \, dx}$$
Since I had no clue about trilogarithms, tried some searching to get enough understanding to solve the above integral, I found this general relation;
$$\operatorname{Li}_s(z)=\frac{\Gamma(1-s)}{2\pi^{1-s}}\left(i^{1-s}\zeta\left(1-s,\frac{1}{2}+\frac{\ln(-z)}{2\pi i}\right)+i^{s-1}\zeta\left(1-s,\frac{1}{2}-\frac{\ln(-z)}{2\pi i}\right)\right)$$
Also, some general functional equations from here, specifically,
$$\operatorname{Li}_3(z)+\operatorname{Li}_3(-z)=\frac{1}{4}\operatorname{Li}_3(z^2)$$
$$\operatorname{Li}_3(z)-\operatorname{Li}_3(-z^{-1})=\frac{-1}{6}\left(\ln^3 z+\pi^2 \ln z\right)$$
Or rewriting the above as;
$$\operatorname{Li}_3(z)-\operatorname{Li}_3(-z^{-1})=\frac{-1}{6}\ln^3 z-\zeta(2)\ln z$$
Understanding any other aspects about trilogarithms (or polylogarithm in general) required knowledge was beyond my scope. So I started solving the integral as follows;
Using some prior experience in solving some basic dilogarithmic integrals, I substituted $\tan(x)=t$;
$$I=\int_0^{1}\frac{\operatorname{Li}_3(t^4)}{1+t^2}\,dt$$
$$t\to x$$ $$I=\int_0^{1}\frac{\operatorname{Li}_3(x^4)}{1+x^2}\,dx$$
Using the first functional equation,
$$I=\int_0^{1}\frac{4\operatorname{Li}_3(x^2)}{1+x^2}\,dx+\int_0^{1}\frac{4\operatorname{Li}_3(-x^2)}{1+x^2}\,dx=I_1+I_2$$
Edit 1: $$\operatorname{Li}_n(z)=\frac{(-1)^{n-1}}{(n-1)!}\left[\int_0^1\frac{z\ln^{n-1}x}{-zx+1}\,dx\right]$$
Found the above here in the 5th integral representation.
Putting $n=3$,
$$I_1=\int_0^{1}\frac{4\operatorname{Li}_3(x^2)}{1+x^2}\,dx=2\int_0^1\int_0^1\frac{1}{(1+x^2)}\frac{x^2\ln^{2}t}{(1-x^2t)}\,dx\,dt$$
Edit 2:
$$I_1=2\int_0^1\int_0^1\frac{x^2\ln^{2}t}{(1-x^2t)(1+x^2)}\,dx\,dt$$
$$I_1=\int_0^1\int_0^1\frac{\ln^{2}t}{(1-x^2t)(1+x^2)}\,dx\,dt-\int_0^1\int_0^1\frac{\ln^{2}t}{(1+t)(1+x^2)}\,dx\,dt$$
Could take this further but it seems like I'm missing some identity or formula to move forward. I am interested in understanding how to solve this integral.
Edit 3: The answer is $$\boxed{I=\frac{1}{8}\left(\zeta\left(4,\frac{1}{4}\right)-\zeta\left(4,\frac{3}{4}\right)\right)-\pi \left(\frac{2\pi G}{3}+\frac{27\zeta(3)}{4}\right)}$$
$G$ is Catalan's constant.
Edit 4 : There isn’t a nice closed form for $\zeta(3)$, like the other even zeta functions, why is that so for odd valued zeta functions?
Found a valid response - here
Edit 5 : Finally figured out the solution,
Picking up from where I left it,
$$I=\int_0^{1}\frac{4\operatorname{Li}_3(x^2)}{1+x^2}\,dx+\int_0^{1}\frac{4\operatorname{Li}_3(-x^2)}{1+x^2}\,dx=4I_1+4I_2$$
Considering the first integral,
$$I_1=\int_0^{1}\frac{\operatorname{Li}_3(x^2)}{1+x^2}\,dx=\int_0^1\int_0^1\frac{1}{2(1+x^2)}\frac{x^2\ln^{2}t}{(1-x^2t)}\,dx\,dt$$
$$I_1=\int_0^1\int_0^1\frac{\ln^{2}t}{2(1-x^2t)(1+x^2)}\,dx\,dt-\int_0^1\int_0^1\frac{\ln^{2}t}{2(1+t)(1+x^2)}\,dx\,dt$$
Using these standard results for both our integrals,
$$\boxed{\eta(3)\Gamma(3)=2\eta(3)=\int_0^1 \frac{(\ln(x))^2}{x+1}\,dx}$$
$$\boxed{\frac{\pi}{4}=\int_0^1 \frac{1}{x^2+1}\,dx}$$
$$\boxed{\int \frac{1}{a^2-x^2}\,dx=\frac{1}{a}\tanh^{-1}\left(\frac{x}{a}\right)}$$
And using the Eta function to Zeta function conversion given below, found from here
$$\boxed{\eta(z)=\zeta(z)(1-2^{1-z})}$$
The above integral $I_1$ simplifies to,
$$I_1=\int_0^1 \frac{\ln^2(t)\tanh^{-1}(t)}{2(1+t)\sqrt{t}}\,dt-\frac{3\pi\zeta(3)}{16}$$
I solved this first integral using the techniques mentioned here,
$$\int_0^1 \frac{\ln^2(t)\tanh^{-1}(t)}{2(1+t)\sqrt{t}}\,dt=4\beta(4)-\frac{\pi^2G}{3}$$
From above result,
$$\color{red}{4\int_0^{1}\frac{\operatorname{Li}_3(x^2)}{1+x^2}\,dx=16\beta(4)-\frac{4\pi^2G}{3}-\frac{3\pi\zeta(3)}{4}\tag1}$$
Now, similarly trying to evaluate $I_2=\int_0^{1}\frac{\operatorname{Li}_3(-x^2)}{1+x^2}\,dx$,
I used this cool identity I found, $$\color{blue}{\int_0^\infty \frac{\operatorname{Li}_a(-x^2)}{1+x^2}\,dx=\pi(1-2^{a-1})\zeta(a)\underset{a=3}\implies \int_0^\infty \frac{\operatorname{Li}_3(-x^2)}{1+x^2}\,dx=-3\pi\zeta(3)}$$
But the limits were not matching my integral so rewriting my integral as,
$$\color{red}{\int_0^1\implies\int_0^\infty-\int_1^\infty}$$
In the above split, the first part is evaluated using the above derived result, where as in the second part, after substituting $x=\frac{1}{x}$, we get,
$$\int_0^{1}\frac{\operatorname{Li}_3(-x^2)}{1+x^2}\,dx=-3\pi\zeta(3)-\int_0^{1}\frac{\operatorname{Li}_3\left(\frac{-1}{x^2}\right)}{1+x^2}\,dx\tag2$$
Using another useful result,
Now from here,
$$\color{green}{\operatorname{Li}_3(-t)-\operatorname{Li}_3\left(\frac{-1}{t}\right)=\frac{-(\ln(t))^3}{6}+2\operatorname{Li}_2(-1)\ln(t)\implies -\left({\zeta(2)\ln(t)}+\frac{(\ln(t))^3}{6}\right)\tag3}$$ Also used the below result in our above result,
$$\color{brown}{\operatorname{Li}_2(-1)=-\frac{\zeta(2)}{2}}$$
Also, found the generalized version of our first boxed result as follows,
$$\boxed{\Gamma(z)\eta(z)=(-1)^{z-1}\int_0^1 \frac{\ln^{z-1}(x)}{1+x}\,dx}$$
Using the above three results in $(2)$ on the two integrals it splits into (as per the boxed result $(2)$) , we get,
$$\color{purple}{4\int_0^{1}\frac{\operatorname{Li}_3(-x^2)}{1+x^2}\,dx=16\beta(4)+\frac{2\pi^2G}{3}-6\pi\zeta(3)\tag4}$$
Therefore combining our results $(1),(4)$,
$$\color{brown}{\int_{0}^{\frac{\pi}{4}}\operatorname{Li}_3(\tan^4 x) \, dx=32\beta(4)-\frac{2\pi^2G}{3}-\frac{27\pi\zeta(3)}{4}}$$
Perhaps the closed form for $\beta(4)$ isn't straight forward like $\beta(2)$ and hence using, $$\beta(z)=\frac{1}{4^z}\zeta\left(z,\frac{1}{4}\right)-\frac{1}{4^z}\zeta\left(z,\frac{3}{4}\right)$$
Using above result, we can match our original (alternate) closed form,
$$\int_{0}^{\frac{\pi}{4}}\operatorname{Li}_3(\tan^4 x) \, dx=\frac{1}{8}\left(\zeta\left(4,\frac{1}{4}\right)-\zeta\left(4,\frac{3}{4}\right)\right)-\pi \left(\frac{2\pi G}{3}+\frac{27\zeta(3)}{4}\right)$$
Edit 6:
Found this cool identity,
$$\int_0^\infty \frac{\operatorname{Li}_a(-x)}{1+x^2}=-\frac{\pi}{2^{a+1}}\eta(a)-a\beta(a+1)$$