UPDATE
Here is a beautiful generalization of the integral calculated below.
Let $n$ be a natural number. Then, we have
$$\int_0^1 \frac{\log^{2n-1}(x)\operatorname{arctanh}(x)\arctan(x)}{x}\textrm{d}x$$
$$=\frac{\pi}{4}\left(2^{-2 n-1}-1\right) \zeta (2 n+1) (2n-1)!$$
$$+\frac{\pi}{16} \lim_{s\to0}\left(\frac{d^{2n-1}}{ds^{2n-1}}\left(\frac{1}{s}\tan\left(\frac{\pi}{4}s\right)\left(\pi+\psi\left(\frac{3}{4}-\frac{s}{4}\right)-\psi\left(\frac{1}{4}-\frac{s}{4}\right)\right)\right)\right),$$
where $\zeta$ represents the Riemann zeta function and $\psi$ denotes the Digamma function.
All details will appear soon in a new paper.
A solution by Cornel I. Valean to one of the resulting integrals in Shobhit Bhatnagar's post
Let's show that
$$\int_0^1 \frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}\textrm{d}x=\frac{3}{8}\zeta(2)G-\frac{7}{32}\pi \zeta(3),$$
without using harmonic series.
We want to begin with the variable change $x \mapsto 1/x$ and use that $\arctan(x)+\arctan\left(\frac{1}{x}\right)=\frac{\pi}{2}, \ x>0$, and $\operatorname{arctanh}\left(\frac{1}{x}\right)-\operatorname{arctanh}(x)=\frac{\pi}{2}i, \ x>1$. Then, we write
$$I=\int_0^1 \frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}\textrm{d}x=-\int_1^{\infty} \frac{\log(x)\operatorname{arctanh}(1/x)\arctan(1/x)}{x}\textrm{d}x$$
$$=-\int_1^{\infty} \frac{\log(x)(\pi/2i+\operatorname{arctanh}(x))(\pi/2-\arctan(x))}{x}\textrm{d}x$$
$$=\Re\biggr \{\int_1^{\infty}\left(\frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}-\frac{\pi}{2}\frac{\operatorname{arctanh}(x)\log(x)}{x}\right)\textrm{d}x \biggr\}$$
$$=\Re\biggr \{\left(\int_0^{\infty}-\int_0^{1}\right)\left(\frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}-\frac{\pi}{2}\frac{\operatorname{arctanh}(x)\log(x)}{x}\right)\textrm{d}x \biggr\}$$
$$=\Re\biggr \{\int_0^{\infty}\left(\frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}-\frac{\pi}{2}\frac{\operatorname{arctanh}(x)\log(x)}{x}\right)\textrm{d}x \biggr\}$$
$$-\underbrace{\int_0^1 \frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}\textrm{d}x}_{\displaystyle I}+\frac{\pi}{2}\underbrace{\int_0^1\frac{\operatorname{arctanh}(x)\log(x)}{x}\textrm{d}x}_{\displaystyle -7/8\zeta(3)},$$
whence we obtain that
$$I=\int_0^1 \frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}\textrm{d}x$$
$$=\frac{1}{2}\Re\biggr \{\int_0^{\infty}\left(\frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}-\frac{\pi}{2}\frac{\operatorname{arctanh}(x)\log(x)}{x}\right)\textrm{d}x \biggr\}-\frac{7}{32}\pi \zeta(3)$$
$$=\frac{1}{2}\Re\biggr \{\int_0^{\infty}\frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}\textrm{d}x \biggr\}-\frac{\pi}{4}\Re\biggr \{\int_0^{\infty}\frac{\operatorname{arctanh}(x)\log(x)}{x}\textrm{d}x \biggr\}$$
$$-\frac{7}{32}\pi \zeta(3),\tag1$$
where in the calculations I used the fact that $\int_0^1\frac{\operatorname{arctanh}(x)\log(x)}{x}\textrm{d}x=\int_0^1 \log(x) \sum_{n=1}^{\infty} \frac{x^{2n-2}}{2n-1}\textrm{d}x$$ $$=\sum_{n=1}^{\infty} \frac{1}{2n-1}\int_0^1 x^{2n-2}\log(x)\textrm{d}x=-\sum_{n=1}^{\infty} \frac{1}{(2n-1)^3}=-\frac{7}{8}\zeta(3)$.
For the second integral in $(1)$ , we have
$$\Re\biggr \{\int_0^{\infty}\frac{\operatorname{arctanh}(x)\log(x)}{x}\textrm{d}x \biggr\}=\int_0^1\frac{\operatorname{arctanh}(x)\log(x)}{x}\textrm{d}x+\Re\biggr \{\int_1^{\infty}\frac{\operatorname{arctanh}(x)\log(x)}{x}\textrm{d}x \biggr\}$$
$$=\int_0^1\frac{\operatorname{arctanh}(x)\log(x)}{x}\textrm{d}x+\Re\biggr \{\int_1^{\infty}\frac{(\operatorname{arctanh}(1/x)-\pi/2 i)\log(x)}{x}\textrm{d}x \biggr\}$$
$$=\int_0^1\frac{\operatorname{arctanh}(x)\log(x)}{x}\textrm{d}x-\Re\biggr \{\int_0^1\frac{(\operatorname{arctanh}(x)-\pi/2 i)\log(x)}{x}\textrm{d}x \biggr\}$$
$$=0.\tag2$$
Combining the results in $(1)$ and $(2)$, we arrive at
$$I=\int_0^1 \frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}\textrm{d}x$$
$$=\frac{1}{2}\Re\biggr \{\int_0^{\infty}\frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}\textrm{d}x \biggr\}-\frac{7}{32}\pi \zeta(3). \tag3$$
At this point, we consider the generalized integral result,
$$\displaystyle J(s)=\Re \biggr\{\int_0^{\infty}x^{s-1}\operatorname{arctanh}(x)\arctan(x)\textrm{d}x\biggr\}$$ $$=\frac{\pi}{8s}\tan\left(\frac{\pi}{4}s\right)\left(\pi+\psi\left(\frac{3}{4}-\frac{s}{4}\right)-\psi\left(\frac{1}{4}-\frac{s}{4}\right)\right),$$
$0>s>-2$ (which can be extended to $1>s>-2$), we want to prove.
(Is this new in the mathematical literature?)
Using integral representations of $\arctan(x)$ and $\operatorname{arctanh}(x)$, we write
$$J(s)=\Re \biggr\{\int_0^{\infty}x^{s-1}\operatorname{arctanh}(x)\arctan(x)\textrm{d}x\biggr\}$$
$$=\int_0^{\infty}\left(\int_0^1\left( PV\int_0^1\frac{x^{s+1}}{(1-y^2 x^2)(1+z^2 x^2)}\textrm{d}y\right) \textrm{d}z\right)\textrm{d}x$$
$$=\int_0^1\left( \int_0^1\left(PV\int_0^{\infty}\frac{x^{s+1}}{(1-y^2 x^2)(1+z^2 x^2)}\textrm{d}x\right) \textrm{d}z\right)\textrm{d}y$$
$$=\int_0^1\left( \int_0^1\frac{y^2}{y^2+z^2}\left(PV\int_0^{\infty}\frac{x^{s+1}}{1-y^2 x^2}\textrm{d}x\right) \textrm{d}z\right)\textrm{d}y$$
$$+\int_0^1\left( \int_0^1\frac{z^2}{y^2+z^2}\left(\int_0^{\infty}\frac{x^{s+1}}{1+z^2 x^2}\textrm{d}x\right) \textrm{d}z\right)\textrm{d}y$$
$$=\frac{1}{2}\int_0^1\left( \int_0^1\frac{y^{-s}}{y^2+z^2}\left(PV\int_0^{\infty}\frac{x^{s/2}}{1-x}\textrm{d}x\right) \textrm{d}y\right)\textrm{d}z$$
$$+\frac{1}{2}\int_0^1\left( \int_0^1\frac{z^{-s}}{y^2+z^2}\left(\int_0^{\infty}\frac{x^{s/2}}{1+x}\textrm{d}x\right) \textrm{d}y\right)\textrm{d}z$$
$$=\frac{\pi}{2}\cot\left(\frac{\pi}{2}s\right)\int_0^1\left( \int_0^1\frac{y^{-s}}{y^2+z^2} \textrm{d}z\right)\textrm{d}y-\frac{\pi}{2}\csc\left(\frac{\pi}{2}s\right)\int_0^1\left( \int_0^1\frac{z^{-s}}{y^2+z^2} \textrm{d}y\right)\textrm{d}z$$
$$=-\frac{\pi}{2}\tan\left(\frac{\pi}{4}s\right)\int_0^1\left( \int_0^1\frac{y^{-s}}{y^2+z^2} \textrm{d}z\right)\textrm{d}y=-\frac{\pi}{2}\tan\left(\frac{\pi}{4}s\right)\int_0^1 y^{-1-s}\left(\frac{\pi}{2}-\arctan(y)\right)\textrm{d}y$$
$$=-\frac{\pi}{2}\tan\left(\frac{\pi}{4}s\right)\left(-\frac{\pi}{4s}-\frac{1}{s}\int_0^1\frac{y^{-s}}{1+y^2}\textrm{d}y\right)$$
$$=\frac{\pi}{8s}\tan\left(\frac{\pi}{4}s\right)\left(\pi+\psi\left(\frac{3}{4}-\frac{s}{4}\right)-\psi\left(\frac{1}{4}-\frac{s}{4}\right)\right).$$
Now, based upon the previous result, it's easy to see that
$$\lim_{s\to0}\frac{d}{ds}\{\Re\{J(s)\}\}=\lim_{s\to0}\frac{d}{ds}\biggr\{\Re\biggr\{\int_0^{\infty}x^{s-1}\operatorname{arctanh}(x)\arctan(x)\textrm{d}x\biggr \}\biggr\}$$
$$=\lim_{s\to0}\frac{d}{ds}\biggr\{\frac{\pi}{8s}\tan\left(\frac{\pi}{4}s\right)\left(\pi+\psi\left(\frac{3}{4}-\frac{s}{4}\right)-\psi\left(\frac{1}{4}-\frac{s}{4}\right)\right)\biggr\}$$
$$=\frac{3}{64}\zeta(2)\left(\psi^{(1)}\left(\frac{1}{4}\right)-\psi^{(1)}\left(\frac{3}{4}\right)\right)$$
$$=\frac{3}{4}\zeta(2)G,\tag4$$
which is immediately clear if we use the Trigamma series representation, $\displaystyle \psi^{(1)}(z)= \sum_{k=0}^{\infty} \frac{1}{(z+k)^2}$, and then recognize in the difference of the Trigamma special values the series representation of the Catalan's constant, $\displaystyle G=\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}$.
Combining the results in $(3)$ and $(4)$, we conclude that
$$I=\int_0^1 \frac{\log(x)\operatorname{arctanh}(x)\arctan(x)}{x}\textrm{d}x=\frac{3}{8}\zeta(2)G-\frac{7}{32}\pi \zeta(3),$$
which is the desired result.
For example, using the same strategy we may get a generalization of the present integral. Another such exotic integral we may get is
$$\int_0^1 \frac{\log^3(x)\operatorname{arctanh}(x)\arctan(x)}{x}\textrm{d}x$$
$$=\frac{3}{1024}\zeta(2)\psi^{(3)}\left(\frac{1}{4}\right)-\frac{945}{256}\zeta(6)-\frac{93}{64}\pi\zeta(5)+\frac{45}{64}\zeta(4)G,$$
which looks really nice, isn't it?
A first note: The other integral in Shobhit Bhatnagar's post may be done in a similar style $\displaystyle \int_0^1 \frac{\log^2(x)\tanh^{-1}(x)}{1+x^2}\textrm{d}x,$ which can also be reduced to integrals already found in the book, (Almost) Impossible Integrals, Sums, and Series, like
$$\int_0^1 \frac{\arctan(x)\log^2(x)}{1+x} \textrm{d}x=\frac{21}{64}\pi \zeta(3)-\frac{\pi^3}{32}\log(2)-\frac{\pi^2}{24}G.$$
The other integral with $1-x$ in denominator may be calculated by a strategy similar to the one presented in this post.
A second note: Using the Cauchy product $\displaystyle \arctan(x)\operatorname{arctanh}(x)=\sum _{k=1}^{\infty} \sum _{n=1}^{2 k-1} \frac{(-1)^{n-1} x^{4 k-2}}{(2 k-1) (2 n-1)}$, is another way of attacking the integrals. For example, using the results with integrals previously given, we get other beautiful results with series
$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^3} \sum _{n=1}^{2 k-1}\frac{(-1)^{n-1}}{2 n-1}=\frac{7 }{8}\pi \zeta (3)-\frac{3 }{2}\zeta(2)G,$$
or
$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^5}\sum _{n=1}^{2 k-1}\frac{(-1)^{n-1}}{2 n-1}$$
$$=\frac{315}{32}\zeta (6)-\frac{15 }{8}\zeta(4)G+\frac{31 }{8}\pi \zeta (5)-\frac{1}{128} \zeta (2) \psi ^{(3)}\left(\frac{1}{4}\right).$$