A similar path, denote
$$
P(x) = \int_{0}^{x} \frac{\ln^2\!t}{1+t}\,\mathrm{d}t = \int_{0}^{1} \frac{x\ln^2(xt)}{1+xt}\,\mathrm{d}t, \quad P(1) = \int_{0}^{1} \frac{\ln^2\!t}{1+t}\,\mathrm{d}t = \frac{3\zeta(3)}{2}
$$
hence
$$
\begin{aligned}
I &= P(x)\arctan x\bigr|_{x=0}^{1} - \int_{0}^{1} \frac{P(x)}{1+x^2}\,\mathrm{d}x \\
&=\frac{3\pi}{8}\zeta(3) - \int_{0}^{1} \int_{0}^{1} \frac{x\ln^2(xt)}{(1+xt)(1+x^2)}\,\mathrm{d}t\mathrm{d}x \\
&=\frac{3\pi}{8}\zeta(3) - \int_{0}^{1} \frac{\ln^2\!x}{1+x^2} \left(\int_{0}^{1} \frac{x}{1+xt}\,\mathrm{d}t\right)\mathrm{d}x - 2\int_{0}^{1} \int_{0}^{1} \frac{x\ln x\ln t}{(1+xt)(1+x^2)}\,\mathrm{d}t\mathrm{d}x\\
&\quad\quad -\int_{0}^{1} \ln^2\!t \left(\int_{0}^{1} \frac{x}{(1+xt)(1+x^2)}\,\mathrm{d}x\right)\mathrm{d}t
\end{aligned}
$$
where the first one
$$
\int_{0}^{1} \frac{\ln^2\!x}{1+x^2} \left(\int_{0}^{1} \frac{x}{1+xt}\,\mathrm{d}t\right)\mathrm{d}x = \int_{0}^{1} \frac{\ln^2\!x\ln(1+x)}{1+x^2} \,\mathrm{d}x
$$
the second one is what your question focus
$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \frac{x\ln x\ln t}{(1+xt)(1+x^2)}\,\mathrm{d}t\mathrm{d}x
&= \int_{0}^{1} \frac{\ln x}{1+x^2}\left(\int_{0}^{1} \frac{x\ln t}{1+xt}\,\mathrm{d}t\right)\mathrm{d}x \\
&= \int_{0}^{1} \frac{\ln x}{1+x^2}\left(-\int_{0}^{1} \frac{\ln(1+xt)}{t}\,\mathrm{d}t\right)\mathrm{d}x \\
&= \color{blue}{\int_{0}^{1} \frac{\ln x\operatorname{Li}_2(-x)}{1+x^2}\,\mathrm{d}x}
\end{aligned}
$$
on the other hand
$$
\begin{aligned}
&\int_{0}^{1} \int_{0}^{1} \frac{x\ln x\ln t}{(1+xt)(1+x^2)}\,\mathrm{d}t\mathrm{d}x \\
=& \int_{0}^{1} {\ln t}\left(\int_{0}^{1} \frac{x\ln x}{(1+xt)(1+x^2)}\,\mathrm{d}x\right)\mathrm{d}t \\
=& \int_{0}^{1} \frac{\ln t}{1+t^2} \left(\int_{0}^{1} \left(\frac{t+x}{1+x^2}-\frac{t}{1+xt}\right)\ln x\,\mathrm{d}x\right)\mathrm{d}t \\
=& \int_{0}^{1} \frac{t\ln t}{1+t^2} \,\mathrm{d}t\int_{0}^{1} \frac{\ln x}{1+x^2}\,\mathrm{d}x + \int_{0}^{1} \frac{\ln t}{1+t^2} \,\mathrm{d}t\int_{0}^{1} \frac{x\ln x}{1+x^2}\,\mathrm{d}x - \color{blue}{\int_{0}^{1} \frac{\ln t\operatorname{Li}_2(-t)}{1+t^2}\,\mathrm{d}t}
\end{aligned}
$$
which shows
$$
\int_{0}^{1} \int_{0}^{1} \frac{x\ln x\ln t}{(1+xt)(1+x^2)}\,\mathrm{d}t\mathrm{d}x = \color{blue}{\int_{0}^{1} \frac{\ln x\operatorname{Li}_2(-x)}{1+x^2}\,\mathrm{d}x} = \int_{0}^{1} \frac{t\ln t}{1+t^2} \,\mathrm{d}t\int_{0}^{1} \frac{\ln x}{1+x^2}\,\mathrm{d}x
$$
at last, the third one
$$
\begin{aligned}
&\int_{0}^{1} \ln^2\!t \left(\int_{0}^{1} \frac{x}{(1+xt)(1+x^2)}\,\mathrm{d}x\right)\mathrm{d}t \\
= &\int_{0}^{1} \frac{\ln^2\!t}{1+t^2} \left(\int_{0}^{1} \left(\frac{t+x}{1+x^2}-\frac{t}{1+xt}\right)\mathrm{d}x\right)\mathrm{d}t \\
= &\frac{\pi}{4}\int_{0}^{1} \frac{t\ln^2\!t}{1+t^2} \,\mathrm{d}t + \frac{\ln2}{2}\int_{0}^{1} \frac{\ln^2\!t}{1+t^2} \,\mathrm{d}t - \int_{0}^{1} \frac{\ln^2\!t\ln(1+t)}{1+t^2}\,\mathrm{d}t
\end{aligned}
$$
notice $\int_{0}^{1} \frac{\ln^2\!t\ln(1+t)}{1+t^2}\,\mathrm{d}t$ should be canceled out, thus
$$
\begin{aligned}
I &= \frac{3\pi}{8}\zeta(3) - \frac{\pi}{4}\int_{0}^{1} \frac{t\ln^2\!t}{1+t^2} \,\mathrm{d}t - \frac{\ln2}{2}\int_{0}^{1} \frac{\ln^2\!t}{1+t^2} \,\mathrm{d}t - 2\int_{0}^{1} \frac{t\ln t}{1+t^2} \,\mathrm{d}t\int_{0}^{1} \frac{\ln x}{1+x^2}\,\mathrm{d}x\\
&= \frac{21\pi}{64}\zeta(3) - \frac{\pi^2}{24}G - \frac{\pi^3}{32}\ln2
\end{aligned}
$$
$$\color{red}{\int_0^1\frac{\tan^{-1}x\ln x\ln(1+x)}{x},dx= \Im \text{Li}_4(i)+\frac{\pi^2}{16}G-\frac{21\pi}{128}\zeta(3) }$$
– Quanto Dec 10 '24 at 14:39