The following question is taken from "Arrows, Structures and Functors the categorical imperative" by Arbib and Manes
$\color{Green}{Background:}$
$\textbf{(1)}$ $\textbf{Definition:}$ A functor $H$ from a category $\textbf{K}$ to a category $\textbf{L}$ is a function which maps $\text{Obj}\textbf{(K)}\to \text{Obj}\textbf{(L)}:A\mapsto HA,$ and which for each pair $A,B$ of objects $\textbf{K}$ maps $\textbf{K}(A,B)\to \textbf{L}(HA, HB):f\mapsto Hf,$ while satisfying the two conditions:
$$H(\text{id}_A)=\text{id}_{HA}\quad\text{ for every }A\in\text{Obj}\textbf{(K)}$$ $$H(g\cdot f)=Hg\cdot Hf \quad\text{ whenever }g\cdot f\text{ is defined in }\textbf{K}.$$
We say that $H$ is an $\textbf{isomorphism}$ if $A\mapsto HA$ and each $\textbf{K}(A,B)\to \textbf{L}(HA, HB)$ are bijections.
$\textbf{(2)}$ $\textbf{Definition:}$ Given two categories $\textbf{K}$ and $\textbf{L},$ we define their $\textbf{product}$ $\textbf{K}\times \textbf{L}$ to be the category whose objects are ordered pairs $(K,L)$ of objects $K$ from $\textbf{K}$ and $L$ from $\textbf{L},$ and for which morphisms
$$(K,L)\to (K',L')$$
are just pairs $(f,g)$ with $f\in \textbf{K}(K,K')$ and $g\in \textbf{L}(L,L'),$ while
$$\mathrm{id}_{(K,L)}=(\mathrm{id}_K,\mathrm{id}_L)\text{ and }(f',g')\cdot(f,g)=(f'\cdot f,g'\cdot g).$$
To tie all these concepts together we note the following:
$\textbf{(3)}\textbf{ Observation:}$ The map which assigns to each pair of objects $K,K'$ in the category $\textbf{K}$ the set $\textbf{K}(K,K')$ of morphisms from $K$ to $K'$ becomes a functor
$$\mathrm{hom}:\textbf{K}^\mathrm{op}\times \textbf{K}\to \textbf{Set}:(K,K')\mapsto \textbf{K}(K,K')$$
when we make the morphism assignment
$$(f:K_1 --<{K_1}^{'}, g:K_2\to {K_2}^{'})\mapsto \textbf{K}(K_1,K_2)\xrightarrow{g\cdot(-)\cdot f}\textbf{K}({K_1}^{'},{K_2}^{'}).$$
($\textbf{hom}$ is sometimes referred to as the $\textbf{external representation functor,}$ and is often written $\textbf{K}(\cdot,\cdot).$)
$\textbf{(4) Exercise:}$ If $H:\textbf{K}\times \textbf{L}\to \textbf{N}$ is a functor of two variables and if $K\in \textbf{K}$ is a fixed object, then show that $H(K,-):\textbf{L}\to \textbf{N}$ defined by $H(K,-)(L)=H(K,L), H(K,-)(f:L\to L')=H(\text{id}_K,f)$ is a functor $\textbf{L}\to \textbf{N}$ of (one variable).
$\color{Red}{Questions:}$
I have asked about the above exercise here and here. I posted twice about trying to understand the functor notation used in the exercise. I understand that $H(K,-)(L)=H(K,L),$ means $(K,-)\xrightarrow{H} (K,L):(K,-)\mapsto H(K,L)$ for defining functor on objects.
As for $H(K,-)(f:L\to L')=H(\text{id}_K,f)$ is a functor for defining on morphism. In terms of mapping notation, it translates to $((K,L)\xrightarrow{f}(K,L'))\xrightarrow{H}(H(K,L)\xrightarrow{Hf}H(K,L'))=H(\text{id}_K,L)\xrightarrow{Hf}H(\text{id}_K,L').$ I am not sure if that is the correct interpretation. If so, for the case of defining functor for composition of morphism, would it mean: $H(K,-)(f\circ g:L\to L'\to L'')=H(\mathrm{id}_K,f\circ g)=H(\mathrm{id}_K,f)\cdot H(\mathrm{id}_K, g)?$ Then to show the correctness of this equational identity.
Might it be the following: $H(K,-)(f\circ g:L\to L'\to L'')=[((K,L)\xrightarrow{f}(K,L'))\xrightarrow{H}(H(K,L)\xrightarrow{Hf}H(K,L'))] \cdot [((K,L)\xrightarrow{g}(K,L'))\xrightarrow{H}(H(K,L')\xrightarrow{Hg}H(K,L''))]=[H(\text{id}_K,L)\xrightarrow{Hf}H(\text{id}_K,L')]\cdot [H(\text{id}_K,L')\xrightarrow{Hg}H(\text{id}_K,L'')]=H(\mathrm{id}_K,f)\cdot H(\mathrm{id}_K, g)=H(\mathrm{id}_K,f\circ g).$ I am not sure if this is correct.
then
$G(f\circ g)=G(L)\to G(L')\to G(L'')$
and $H(1,f\circ g):H(K,L)\to H(K,L')\to H(K,L'')$ and $G(f\circ g)=H(1,f\circ g).$
But $G(f\circ g)=G(L)\to G(L')\to G(L'')=(G(L)\to G(L'))\circ (G(L')\to G(L''))=G(f)\circ G(g)...$
– Seth Sep 27 '23 at 03:17\leftarrowto do $\leftarrow$ instead of this $--<$ thing. The hom functor is a very important example but it is entirely irrelevant for this exercise. Have you understood my most recent comments? – FShrike Sep 28 '23 at 14:47