The following question is taken from "Arrows, Structures and Functors the categorical imperative" by Arbib and Manes
$\color{Green}{Background:}$
$\textbf{(1)}$ $\textbf{Definition:}$ A functor $H$ from a category $\textbf{K}$ to a category $\textbf{L}$ is a function which maps $\text{Obj}\textbf{(K)}\to \text{Obj}\textbf{(L)}:A\mapsto HA,$ and which for each pair $A,B$ of objects $\textbf{K}$ maps $\textbf{K}(A,B)\to \textbf{L}(HA, HB):f\mapsto Hf,$ while satisfying the two conditions:
$$H(\text{id}_A)=\text{id}_{HA}\quad\text{ for every }A\in\text{Obj}\textbf{(K)}$$ $$H(g\cdot f)=Hg\cdot Hf \quad\text{ whenever }g\cdot f\text{ is defined in }\textbf{K}.$$
We say that $H$ is an $\textbf{isomorphism}$ if $A\mapsto HA$ and each $\textbf{K}(A,B)\to \textbf{L}(HA, HB)$ are bijections.
$\textbf{(2) Example:}$ A more interesting functor is the functor $-\times X_0:\textbf{Set}\to\textbf{Set},$ where $X_0$ is a fixed set, which sends each set $Q$ to the set $Q\times X_0,$ and sends each map $f:Q\to Q'$ to the map $f\times X_0:Q\times X_0\to Q'\times X_0:(q,x)\mapsto (f(q),x).$ [Thus $f\times X_0$ could be written as $f\times \mathrm{id}_{X_0}.$]
$\textbf{(3) Definition:}$ Given two categories $\textbf{K}$ and $\textbf{L},$ we define their $\textbf{product}$ $\textbf{K}\times \textbf{L}$ to be the category whose objects are ordered pairs $(K,L)$ of objects $K$ from $\textbf{K}$ and $L$ from $\textbf{L},$ and for which morphisms
$$(K,L)\to (K',L')$$
are just pairs $(f,g)$ with $f\in \textbf{K}(K,K')$ and $g\in \textbf{L}(L,L'),$ while
$$\mathrm{id}_{(K,L)}=(\mathrm{id}_K,\mathrm{id}_L)\text{ and }(f',g')\cdot(f,g)=(f'\cdot f,g'\cdot g).$$
$\textbf{(4) Exercise:}$ If $H:\textbf{K}\times \textbf{L}\to \textbf{N}$ is a functor of two variables and if $K\in \textbf{K}$ is a fixed object, then show that $H(K,-):\textbf{L}\to \textbf{N}$ defined by $H(K,-)(L)=H(K,L), H(K,-)(f:L\to L')=H(\text{id}_K,f)$ is a functor $\textbf{L}\to \textbf{N}$ of (one variable).
$\color{Red}{Questions:}$
In Exercise (4) above, I am having trouble understanding the notations $H(K,-)(L)=H(K,L)$ and $H(K,-)(f:L\to L')=H(\text{id}_K,f).$ First, is it a special case of (2) Example or (3) Definition above.
Second, does $H(K,-)(L)=H(K,L)$ mean: $(K,-)\xrightarrow{H} (K,L):(K,-)\mapsto H(K,L)$ for defining functor on objects, and $H(K,-)(f:L\to L')=H(\text{id}_K,f)$ means: $((K,L)\xrightarrow{f}(K,L'))\xrightarrow{H}(H(K,L)\xrightarrow{Hf}H(K,L'))=H(\text{id}_K,L)\xrightarrow{Hf}H(\text{id}_K,L')$
Thank you in advance